984 resultados para 280504 Data Encryption
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The present research problem is to study the existing encryption methods and to develop a new technique which is performance wise superior to other existing techniques and at the same time can be very well incorporated in the communication channels of Fault Tolerant Hard Real time systems along with existing Error Checking / Error Correcting codes, so that the intention of eaves dropping can be defeated. There are many encryption methods available now. Each method has got it's own merits and demerits. Similarly, many crypt analysis techniques which adversaries use are also available.
Resumo:
The rapid development of data transfer through internet made it easier to send the data accurate and faster to the destination. There are many transmission media to transfer the data to destination like e-mails; at the same time it is may be easier to modify and misuse the valuable information through hacking. So, in order to transfer the data securely to the destination without any modifications, there are many approaches like cryptography and steganography. This paper deals with the image steganography as well as with the different security issues, general overview of cryptography, steganography and digital watermarking approaches. The problem of copyright violation of multimedia data has increased due to the enormous growth of computer networks that provides fast and error free transmission of any unauthorized duplicate and possibly manipulated copy of multimedia information. In order to be effective for copyright protection, digital watermark must be robust which are difficult to remove from the object in which they are embedded despite a variety of possible attacks. The message to be send safe and secure, we use watermarking. We use invisible watermarking to embed the message using LSB (Least Significant Bit) steganographic technique. The standard LSB technique embed the message in every pixel, but my contribution for this proposed watermarking, works with the hint for embedding the message only on the image edges alone. If the hacker knows that the system uses LSB technique also, it cannot decrypt correct message. To make my system robust and secure, we added cryptography algorithm as Vigenere square. Whereas the message is transmitted in cipher text and its added advantage to the proposed system. The standard Vigenere square algorithm works with either lower case or upper case. The proposed cryptography algorithm is Vigenere square with extension of numbers also. We can keep the crypto key with combination of characters and numbers. So by using these modifications and updating in this existing algorithm and combination of cryptography and steganography method we develop a secure and strong watermarking method. Performance of this watermarking scheme has been analyzed by evaluating the robustness of the algorithm with PSNR (Peak Signal to Noise Ratio) and MSE (Mean Square Error) against the quality of the image for large amount of data. While coming to see results of the proposed encryption, higher value of 89dB of PSNR with small value of MSE is 0.0017. Then it seems the proposed watermarking system is secure and robust for hiding secure information in any digital system, because this system collect the properties of both steganography and cryptography sciences.
Resumo:
BACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A solution to protect privacy in probabilistic record linkages is to encrypt these sensitive information. Unfortunately, encrypted hash codes of two names differ completely if the plain names differ only by a single character. Therefore, standard encryption methods cannot be applied. To overcome these challenges, we developed the Privacy Preserving Probabilistic Record Linkage (P3RL) method. METHODS In this Privacy Preserving Probabilistic Record Linkage method we apply a three-party protocol, with two sites collecting individual data and an independent trusted linkage center as the third partner. Our method consists of three main steps: pre-processing, encryption and probabilistic record linkage. Data pre-processing and encryption are done at the sites by local personnel. To guarantee similar quality and format of variables and identical encryption procedure at each site, the linkage center generates semi-automated pre-processing and encryption templates. To retrieve information (i.e. data structure) for the creation of templates without ever accessing plain person identifiable information, we introduced a novel method of data masking. Sensitive string variables are encrypted using Bloom filters, which enables calculation of similarity coefficients. For date variables, we developed special encryption procedures to handle the most common date errors. The linkage center performs probabilistic record linkage with encrypted person identifiable information and plain non-sensitive variables. RESULTS In this paper we describe step by step how to link existing health-related data using encryption methods to preserve privacy of persons in the study. CONCLUSION Privacy Preserving Probabilistic Record linkage expands record linkage facilities in settings where a unique identifier is unavailable and/or regulations restrict access to the non-unique person identifiable information needed to link existing health-related data sets. Automated pre-processing and encryption fully protect sensitive information ensuring participant confidentiality. This method is suitable not just for epidemiological research but also for any setting with similar challenges.
Resumo:
LLas nuevas tecnologías orientadas a la nube, el internet de las cosas o las tendencias "as a service" se basan en el almacenamiento y procesamiento de datos en servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos se centran en encriptar los datos mientras no sea necesario procesarlos (es decir, durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la integridad de dicho servidor de no comprometer los datos. Como posible solución a estos problemas, surgen los esquemas de encriptación homomórficos completos. Un esquema homomórfico completo no requiere desencriptar los datos para operar con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados, manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta manera, cualquier intruso en el sistema no podría robar más que textos cifrados, siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado. Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op¬eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre como acelerar estos esquemas para un uso práctico. Una de las propuestas para acelerar los esquemas homomórficos consiste en el uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado, en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias con respecto a CPUs: -Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo constante -Posibilidad de tener multiples pipes para computación concurrente/paralela. Así, en este proyecto: -Se realizan diferentes implementaciones de esquemas homomórficos en sistemas basados en FPGAs. -Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos en sistemas basados en FPGAs, comparando con proyectos relacionados. -Se comparan las implementaciones con trabajos relacionados New cloud-based technologies, the internet of things or "as a service" trends are based in data storage and processing in a remote server. In order to guarantee a secure communication and handling of data, cryptographic schemes are used. Tradi¬tionally, these cryptographic schemes focus on guaranteeing the security of data while storing and transferring it, not while operating with it. Therefore, once the server has to operate with that encrypted data, it first decrypts it, exposing unencrypted data to intruders in the server. Moreover, the whole traditional scheme is based on the assumption the server is reliable, giving it enough credentials to decipher data to process it. As a possible solution for this issues, fully homomorphic encryption(FHE) schemes is introduced. A fully homomorphic scheme does not require data decryption to operate, but rather operates over the cyphertext ring, keeping an homomorphism between the cyphertext ring and the plaintext ring. As a result, an outsider could only obtain encrypted data, making it impossible to retrieve the actual sensitive data without its associated cypher keys. However, using homomorphic encryption(HE) schemes impacts performance dras-tically, slowing it down. One operation in the plaintext space can lead to several operations in the cyphertext space. Because of this, different approaches address the problem of speeding up these schemes in order to become practical. One of these approaches consists in the use of High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing - hence "field-programmable". Compiling into FPGA means generating a circuit (hardware) specific for that algorithm, instead of having an universal machine and generating a set of machine instructions. FPGAs have, thus, clear differences compared to CPUs: - Pipeline architecture, which allows obtaining successive outputs in constant time. -Possibility of having multiple pipes for concurrent/parallel computation. Thereby, In this project: -We present different implementations of FHE schemes in FPGA-based systems. -We analyse and study advantages and drawbacks of the implemented FHE schemes, compared to related work.
Resumo:
Online multimedia data needs to be encrypted for access control. To be capable of working on mobile devices such as pocket PC and mobile phones, lightweight video encryption algorithms should be proposed. The two major problems in these algorithms are that they are either not fast enough or unable to work on highly compressed data stream. In this paper, we proposed a new lightweight encryption algorithm based on Huffman error diffusion. It is a selective algorithm working on compressed data. By carefully choosing the most significant parts (MSP), high performance is achieved with proper security. Experimental results has proved the algorithm to be fast. secure: and compression-compatible.
Resumo:
Streaming video application requires high security as well as high computational performance. In video encryption, traditional selective algorithms have been used to partially encrypt the relatively important data in order to satisfy the streaming performance requirement. Most video selective encryption algorithms are inherited from still image encryption algorithms, the encryption on motion vector data is not considered. The assumption is that motion vector data are not as important as pixel image data. Unfortunately, in some cases, motion vector itself may be sufficient enough to leak out useful video information. Normally motion vector data consume over half of the whole video stream bandwidth, neglecting their security may be unwise. In this paper, we target this security problem and illustrate attacks at two different levels that can restore useful video information using motion vectors only. Further, an information analysis is made and a motion vector information model is built. Based on this model, we describe a new motion vector encryption algorithm called MVEA. We show the experimental results of MVEA. The security strength and performance of the algorithm are also evaluated.
Resumo:
Cloud storage has rapidly become a cornerstone of many businesses and has moved from an early adopters stage to an early majority, where we typically see explosive deployments. As companies rush to join the cloud revolution, it has become vital to create the necessary tools that will effectively protect users' data from unauthorized access. Nevertheless, sharing data between multiple users' under the same domain in a secure and efficient way is not trivial. In this paper, we propose Sharing in the Rain – a protocol that allows cloud users' to securely share their data based on predefined policies. The proposed protocol is based on Attribute-Based Encryption (ABE) and allows users' to encrypt data based on certain policies and attributes. Moreover, we use a Key-Policy Attribute-Based technique through which access revocation is optimized. More precisely, we show how to securely and efficiently remove access to a file, for a certain user that is misbehaving or is no longer part of a user group, without having to decrypt and re-encrypt the original data with a new key or a new policy.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Transmitting sensitive data over non-secret channels has always required encryption technologies to ensure that the data arrives without exposure to eavesdroppers. The Internet has made it possible to transmit vast volumes of data more rapidly and cheaply and to a wider audience than ever before. At the same time, strong encryption makes it possible to send data securely, to digitally sign it, to prove it was sent or received, and to guarantee its integrity. The Internet and encryption make bulk transmission of data a commercially viable proposition. However, there are implementation challenges to solve before commercial bulk transmission becomes mainstream. Powerful have a performance cost, and may affect quality of service. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Performance degradation and potential for commercial loss discourage the bulk transmission of data over the Internet in any commercial application. This paper outlines technical solutions to these problems. We develop new technologies and combine existing ones in new and powerful ways to minimise commercial loss without compromising performance or inflating overheads.
Resumo:
Homomorphic encryption is a particular type of encryption method that enables computing over encrypted data. This has a wide range of real world ramifications such as being able to blindly compute a search result sent to a remote server without revealing its content. In the first part of this thesis, we discuss how database search queries can be made secure using a homomorphic encryption scheme based on the ideas of Gahi et al. Gahi’s method is based on the integer-based fully homomorphic encryption scheme proposed by Dijk et al. We propose a new database search scheme called the Homomorphic Query Processing Scheme, which can be used with the ring-based fully homomorphic encryption scheme proposed by Braserski. In the second part of this thesis, we discuss the cybersecurity of the smart electric grid. Specifically, we use the Homomorphic Query Processing scheme to construct a keyword search technique in the smart grid. Our work is based on the Public Key Encryption with Keyword Search (PEKS) method introduced by Boneh et al. and a Multi-Key Homomorphic Encryption scheme proposed by L´opez-Alt et al. A summary of the results of this thesis (specifically the Homomorphic Query Processing Scheme) is published at the 14th Canadian Workshop on Information Theory (CWIT).
Resumo:
Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.