996 resultados para 260101 Mineralogy and Crystallography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ok Tedi copper orebody consists of porphyry and skarn orebodies. The skarn orebodies, identified by different mineralogy, are the source of high intermittent fluorine levels in the mill concentrates. This paper discusses the results of the work undertaken to characterize the various fluorine-bearing minerals in samples of final copper concentrates and the distribution of fluorine amongst the minerals. Quantification of each mineral in mill feed and various flotation streams at Ok Tedi enables an understanding of the quantitative response of fluorine-bearing minerals to flotation. The metallurgical behavior of fluorine in the flotation process is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Series of oedometer tests and micro-analytical studies (XRD, SEM and EDAX) have been carried out to investigate the influence of varying gypsum content on swell, compressibility and permeability of lime treated montmorillonitic soil after curing for different period. Immediate swell is observed on inundation of compacted samples with water and continuously increased with gypsum content. However, changes in swell are found to be marginal with curing. This is attributed to the formation and growth of ettringite crystals by ionic reactions of aluminum calcium-sulfate in the presence of water which is confirmed through detailed micro-analysis. The higher swell in uncured specimens and gradual reduction in swell with increase in curing periods are due to relative dominance of formation and growth of ettringite and cementitious compounds, respectively. Also, the ionic reaction products are found to bear a significant influence on the compressibility and permeability behavior. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kawah Ijen volcano-with a record of phreatic eruptions-has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot (T ≈ 37°C), strongly mineralized (TDS = 105 g/L) and extremely acidic (pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H2S is probably being injected into the lake. With progressive addition of H2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative rockforming elements are produced by dissolution of approximately 60 g of andesite per kg of acid solution. Complete neutralization of the acid lake waters by reaction with the wallrock produces a theoretical alteration assemblage equivalent to that observed in volcano-hosted, acid-sulfate epithermal ore deposits. © 1994.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.

The geochemical data, and particularly the immobile elements distribution and REE patterns, show that the Balkouin laterite is the product of an in situ lateritization process that involved a strong depletion of the more soluble elements (K, Mg, Ca, Na, Rb, Sr and Ba) and an enrichment in Fe; Si was also removed, particularly in the uppermost horizons. All along the profile the change in composition is coupled with important changes in mineralogy. In particular, the saprolite is characterized by occurrence of abundant albitic plagioclase, quartz and nontronite; kaolinite is apparently absent. The transition to the overlying lateritic profile marks the breakdown of plagioclase and nontronite, thus allowing kaolinite to become one of the major components upwards, together with goethite and quartz. The upper part of the profile is strongly enriched in hematite (+ kaolinite). Ti oxides (at least in part as anatase) and apatite are typical accessory phases, while free aluminum hydroxides are notably absent. Mass change calculations emphasize the extent of the mass loss, which exceeds 50 wt% (and often 70 wt%) for almost all horizons; only Fe was significantly concentrated in the residual system.

The geochemical and mineralogical features suggest that the lateritic profile is the product of a continuous process that gradually developed from the bedrock upwards, in agreement with the Schellmann classic genetic model. The laterite formation must have occurred at low pH (? 4.5) and high Eh (? 0.4) values, i.e., under acidic and oxidizing environments, which allowed strongly selective leaching conditions. The lack of gibbsite and bohemite is in agreement with the compositional data: the occurrence of quartz (± amorphous silica) all along the profile was an inhibiting factor for the formation of free aluminum hydroxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying groundwater contributions to baseflowforms an essential part of surfacewater body characterisation. The Gortinlieve catchment (5 km2) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite/montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently formthe chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance
of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study addresses to understand the sedimentological properties of the coasts of kodungallur and chellanam, central Kerala to bring out the relationship between the textural, mineralogical and geochemical characters with that of the respective environment. The grain size study of the beach ridge sediments from different pits has been investigated at close intervals, which enables to understand the grain size variations with depth. The sediment samples from various pits of the beach ridges indicate that the sediments range primarily from medium to very fine sand, well to moderately sorted, fine to coarse skewed and leptokurtic to platykurtic. The study area is considered as a prograding coast. Variations in grain size down the pit give three phases of beach building activities i.e.; a coarsening upward sequence in the bottom layers, a fining upward in the middle and coarsening upward in the top. Beach ridges are formed by swash built sediments with cross bedding and setting lag type sediments with seaward dipping/horizontal units. Geochemical signatures in the study area have been brought out through the analysis of major and trace elements. Iron is significantly enriched and its control over many trace elements is evident. Copper, chromium, cobalt, lithium, lead and zinc show decreasing trend with depth, while sodium, potassium,strontium,nickel and organic carbon increases. The association of many trace elements with organic carbon has also been established. Dissolution of trace elements in anoxic environment, at depth and reprecipitation in the oxic layers, at near or subsurface, are the major mechanism that brought out the variation of certain environmentally sensitive elements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%and amphibolitic itabirite. Unlike other mines in the QF, the Aguas Claras Mine contained mainly high-grade ores hosted within dolomitic itabirite. Two distinct types of high-grade ore occurred at the mine: soft and hard. The soft ore was the most abundant and represented more than 85% of the total ore mined until it was mined out in 2002. Soft and hard ores consist essentially of hematite, occurring as martite, anhedral to granular/tabular hematite and, locally, specularite. Gangue minerals are rare, consisting of dolomite, sericite, chlorite, and apatite in the hard and soft ores, and Mn-oxides and ferrihydrite in the soft ore where they are concentrated within porous bands. Chemical analyses show that hard and soft ores consist almost entirely of Fe(2)O(3), with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Aguas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within ""fresh"" dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Caue Formation or a hematite-carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Aguas Claras, Capao Xavier and Tamandua orebodies shows that the original composition of the itabiritic protore plays a major role in the genesis of high- and low-grade soft ores in the QF. Under the same weathering and structural conditions, the dolomitic itabirite is the more favorable to form high-grade deposits than siliceous itabirite. Field relations at the Aguas Claras and Capao Xavier deposits suggest that it is not possible to form huge soft high-grade supergene deposits from siliceous itabirite, unless another control, such as impermeable barriers, had played an important role. The occurrence in the Tamandua Mine of a large, soft, high-grade orebody formed from siliceous itabirite and closely associated with hypogene hard ore suggests that large, soft, high-grade orebodies of the Quadrilatero Ferrifero, which occur within siliceous itabirite, have a hypogene contribution in their formation.