971 resultados para 25-240A
Resumo:
We have synthesized the solid solution Sr2Fe1+xMo1-xO6 with -1 <= x <= 0.25, the composition x=0 corresponding to the well-known double-perovskite system Sr2FeMoO6. We report structural and magnetic properties of the above system, exhibiting systematic variations across the series. These results restrict the range of models that can explain magnetism in this family of compounds, providing an understanding of the magnetic structure.
Resumo:
Julkaistu Silva Fennica Vol. 25(4) -numeron liitteenä.
Resumo:
The structure of bovine prothrombin fragment 1 has been refined at 2.25 Å resolution using high resolution measurements made with the synchrotron beam at CHESS. The synchrotron data were collected photographically by oscillation methods (R-merge = 0.08). These were combined with lower order diffractometer data for refinement purposes. The structure was refined using restrained least-squares methods with the program PROLSQ to a crystallographic R-value of 0.175. The structure includes 105 water molecules with occupancies of >0·6. The first 35 residues (Ala1-Leu35) of the N-terminal ?-carboxy glutamic acid-domain (Ala1-Cys48) of fragment 1 are disordered as are two carbohydrate chains of Mr ? 5000; the latter two combine to render 40% of the structure disordered. The folding of the kringle of fragment 1 is related to the close intramolecular contact between the inner loop disulfide groups. Half of the conserved sequence of the kringle forms an inner core surrounding these disulfide groups. The remainder of the sequence conservation is associated with the many turns of the main chain. The Pro95 residue of the kringle has a cis conformation and Tyr74 is ordered in fragment 1, although nuclear magnetic resonance studies indicate that the comparable residue of plasminogen kringle 4 has two positions. Surface accessibility calculations indicate that none of the disulfide groups of fragment 1 is accessible to solvent.
Resumo:
Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.
Resumo:
Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.
Resumo:
Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.
Resumo:
There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.