976 resultados para 240302 Nuclear and Particle Physics
Resumo:
Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.
Resumo:
The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.
Resumo:
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons ((3)(Lambda)H). The measured yields of (3)(Lambda)H (3/Lambda(H) over bar) and (3)He ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.
Resumo:
In recent years, PHENIX has studied many important observables related to heavy-flavor physics through their leptonic decay measurements including the invariant yield of electrons from nonphotonic sources, and prompt single muons, both of which are dominated by D and B mesons. Charm and beauty cross-sections were measured and compared through single lepton, and lepton-hadron correlations in p+p collisions at root s = 200 GeV. Observables for quarkonia production such as invariant yield and polarization were also measured in p+p collisions. In Au+Au collisions, preliminary results for the R(AA) for single electrons and a 90% CL upper limit for the suppression of s were produced. And in d+Au collisions, a preliminary R(CP) study for J/psi production in different centrality ranges was extracted.
Resumo:
The usual particle emission scenario used in hydrodynamics presupposes that particles instantaneously stop interacting (freeze-out) once they reach some three-dimensional surface. Another formalism has recently been developed where particle emission occurs continuously during the whole expansion of thermalized matter. Here we compare both mechanisms in a simplified hydrodynamical framework and show that they lead to a drastically different interpretation of data.
Resumo:
Employing the general principles of classification of SU3 states, we have found 285 quantum number isomers (QNI), i.e. nuclei for which there are two possible SU3 quantum number sets, characterized by the maximal eigenvalue of the SU3 group Casimir operator, at the minimal value N-0(min) for the quantum number N-0 of the group U3(A-1) symmetric representation, allowed by the Pauli principle. 41 of these QNI can be attributed to the nun-excited, ground SU3 configurations of realistic nuclei. Two examples of QNI: Si-28 and Zn-60, have been studied in detail in the framework of the strictly restricted dynamics model (SRDM).
Resumo:
We derive the equation of state (EOS) for electrically charged neutral dense matter using the quantum hadrodynamics (QHD) model. This is carried out in a non-perturbative manner including quantum corrections for baryons through a realignment of vacuum with baryon-antibaryon condensates. This yields the results of relativistic Hartree approximation of summing over baryonic tadpole diagrams. The quantum corrections from the scalar meson is also taken into account in a similar way. This leads to a softening of the EOS for the hyperonic matter. The formalism also allows Lis to make a self-consistent calculation of the in-medium sigma meson mass. The effects of such quantum corrections on the composition of charged neutral dense matter is considered. The effect of the resulting EOS on the structure of neutron stars is also studied.
Resumo:
We investigate the potential of TESLA and JLC/NLC electron-positron linear collider designs to observe diquarks produced resonantly in processes involving hard photons.
Resumo:
We perform a complete simulation of the process e(+)e(-) --> tau(+)tau(-)nu(ν) over bar where nu can be an electron, muon or tau neutrino, in the context of a general Higgs coupling to tau-leptons. We analyse various kinematical distributions and obtain the sensitivity regions in the parameter space that can be explored at a future e(+)e(-) collider. In particular, inclusion of W boson fusion enhances the sensitivity significantly.
Resumo:
We compare the results obtained by using the continuous emission model with data from Ph-Ph collisions. We determine the initial conditions necessary to reproduce the strange particle ratios (experiment WA97) and with the obtained results, we study the dependence on particle mass of the inverse slope parameter T. Some particle spectra are also shown.
Resumo:
We establish constraints on a general four-fermion contact interaction from precise measurements of electroweak parameters. We compute the one-loop contribution for the leptonic Z width, anomalous magnetic, weak-magnetic, electric and weak dipole moments of leptons in order to extract bounds on the energy scale of these effective interactions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Squeezed correlations of particle-antiparticle pairs, also called back-to-back correlations (BBC), are predicted to appear if the hadron masses are modified in the hot and dense hadronic medium formed in high energy nucleus nucleus collisions. Although well established theoretically, the squeezed-particle correlations have not yet been searched for experimentally in high energy hadronic or heavy ion collisions, clearly requiring optimized forms to experimentally search for this effect. Within a non-relativistic treatment developed earlier we show that one promising way to search for the BBC signal is to look into the squeezed correlation function of pairs of phi's at RHIC energies, plotted in terms of the average momentum of the pair, K(12) = 1/2 (k(1) + k(2)). This variable's modulus, 2 vertical bar K(12)vertical bar, is the non-relativistic limit of the variable Q(bbc), introduced herewith. Some squeezing effects on the HBT correlation function are also discussed.
Resumo:
Squeezed correlations of hadron-antihadron pairs are predicted to appear if their masses are modified in the hot and dense medium formed in high-energy heavy ion collisions. If discovered experimentally, they would be an unequivocal evidence of in-medium mass shift found by means of hadronic probes. We discuss a method proposed to search for this novel type of correlation, illustrating it by means of D(s)-mesons with in-medium shifted masses. These particles are expected to be more easily detected and identified in future upgrades at RHIC.