980 resultados para 240204 Condensed Matter Physics - Other
Resumo:
A new completely integrable model of strongly correlated electrons is proposed which describes two competitive interactions: one is the correlated one-particle hopping, the other is the Hubbard-like interaction. The integrability follows from the fact that the Hamiltonian is derivable from a one-parameter family of commuting transfer matrices. The Bethe ansatz equations are derived by algebraic Bethe ansatz method.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.
Resumo:
Dans ce travail, j’étudierai principalement un modèle abélien de Higgs en 2+1 dimensions, dans lequel un champ scalaire interagit avec un champ de jauge. Des défauts topologiques, nommés vortex, sont créés lorsque le potentiel possède un minimum brisant spontanément la symétrie U(1). En 3+1 dimensions, ces vortex deviennent des défauts à une dimension. Ils ap- paraissent par exemple en matière condensée dans les supraconducteurs de type II comme des lignes de flux magnétique. J’analyserai comment l’énergie des solutions statiques dépend des paramètres du modèle et en particulier du nombre d’enroulement du vortex. Pour le choix habituel de potentiel (un poly- nôme quartique dit « BPS »), la relation entre les masses des deux champs mène à deux types de comportements : type I si la masse du champ de jauge est plus grande que celle du champ sca- laire et type II inversement. Selon le cas, la dépendance de l’énergie au nombre d’enroulement, n, indiquera si les vortex auront tendance à s’attirer ou à se repousser, respectivement. Lorsque le flux emprisonné est grand, les vortex présentent un profil où la paroi est mince, permettant certaines simplifications dans l’analyse. Le potentiel, un polynôme d’ordre six (« non-BPS »), est choisi tel que le centre du vortex se trouve dans le vrai vide (minimum absolu du potentiel) alors qu’à l’infini le champ scalaire se retrouve dans le faux vide (minimum relatif du potentiel). Le taux de désintégration a déjà été estimé par une approximation semi-classique pour montrer l’impact des défauts topologiques sur la stabilité du faux vide. Le projet consiste d’abord à établir l’existence de vortex classi- quement stables de façon numérique. Puis, ma contribution fut une analyse des paramètres du modèle révélant le comportement énergétique de ceux-ci en fonction du nombre d’enroulement. Ce comportement s’avèrera être différent du cas « BPS » : le ratio des masses ne réussit pas à décrire le comportement observé numériquement.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.
Resumo:
Ziel der vorliegenden Dissertation war es, Einblicke in das Kristallisationsverhalten weicher Materie („soft matter“), wie verschiedener Polymere oder Wasser, unter räumlicher Einschränkung („confinement“) zu erlangen. Dabei sollte untersucht werden, wie, weshalb und wann die Kristallisation in nanoporösen Strukturen eintritt. Desweiteren ist Kristallisation weicher Materie in nanoporösen Strukturen nicht nur aus Aspekten der Grundlagenforschung von großem Interesse, sondern es ergeben sich zahlreiche praktische Anwendungen. Durch die gezielte Steuerung der Kristallinität von Polymeren könnten somit Materialien mit verschiendenen mechanischen und optischen Eigenschaften erhalten werden. Desweiteren wurde auch räumlich eingeschränktes Wasser untersucht. Dieses spielt eine wichtige Rolle in der Molekularbiologie, z.B. für das globuläre Protein, und als Wolkenkondensationskeime in der Atmosphärenchemie und Physik. Auch im interstellaren Raum ist eingeschränktes Wasser in Form von Eispartikeln anzutreffen. Die Kristallisation von eingeschränktem Wasser zu verstehen und zu beeinflussen ist letztlich auch für die Haltbarkeit von Baumaterialien wie etwa Zement von großem Interesse.rnUm dies zu untersuchen wird Wasser in der Regel stark abgekühlt und das Kristallisationsverhalten in Abhängigkeit des Volumens untersucht. Dabei wurde beobachtet, dass Mikro- bzw. Nanometer große Volumina erst ab -38 °C bzw. -70 °C kristallisieren. Wasser unterliegt dabei in der Regel dem Prozess der homogenen Nukleation. In der Regel gefriert Wasser aber bei höheren Temperaturen, da durch Verunreinigungen eine vorzeitige, heterogene Nukleation eintritt.rnDie vorliegende Arbeit untersucht die sachdienlichen Phasendiagramme von kristallisierbaren Polymeren und Wasser unter räumlich eingeschränkten Bedingungen. Selbst ausgerichtetes Aluminiumoxid (AAO) mit Porengrößen im Bereich von 25 bis 400 nm wurden als räumliche Einschränkung sowohl für Polymere als auch für Wasser gewählt. Die AAO Nanoporen sind zylindrisch und parallel ausgerichtet. Außerdem besitzen sie eine gleichmäßige Porenlänge und einen gleichmäßigen Durchmesser. Daher eignen sie sich als Modelsystem um Kristallisationsprozesse unter wohldefinierter räumlicher Einschränkung zu untersuchen.rnEs wurden verschiedene halbkristalline Polymere verwendet, darunter Poly(ethylenoxid), Poly(ɛ-Caprolacton) und Diblockcopolymere aus PEO-b-PCL. Der Einfluss der Porengröße auf die Nukleation wurde aus verschiedenen Gesichtspunkten untersucht: (i) Einfluss auf den Nukleationmechanismus (heterogene gegenüber homogener Nukleation), (ii) Kristallorientierung und Kristallinitätsgrad und (iii) Zusammenhang zwischen Kristallisationstemperatur bei homogener Kristallisation und Glasübergangstemperatur.rnEs konnte gezeigt werden, dass die Kristallisation von Polymeren in Bulk durch heterogene Nukleation induziert wird und das die Kristallisation in kleinen Poren hauptsächlich über homogene Nukleation mit reduzierter und einstellbarer Kristallinität verläuft und eine hohe Kristallorientierung aufweist. Durch die AAOs konnte außerdem die kritische Keimgröße für die Kristallisation der Polymere abgeschätzt werden. Schließlich wurde der Einfluss der Polydispersität, von Oligomeren und anderen Zusatzstoffen auf den Nukleationsmechanismus untersucht.rn4rnDie Nukleation von Eis wurde in den selben AAOs untersucht und ein direkter Zusammenhang zwischen dem Nukleationstyp (heterogen bzw. homogen) und der gebildeten Eisphase konnte beobachtet werden. In größeren Poren verlief die Nukleation heterogen, wohingegen sie in kleineren Poren homogen verlief. Außerdem wurde eine Phasenumwandlung des Eises beobachtet. In den größeren Poren wurde hexagonales Eis nachgewiesen und unter einer Porengröße von 35 nm trat hauptsächlich kubisches Eis auf. Nennenswerter Weise handelte es sich bei dem kubischem Eis nicht um eine metastabile sondern eine stabile Phase. Abschließend wird ein Phasendiagramm für räumlich eingeschränktes Wasser vorgeschlagen. Dieses Phasendiagramm kann für technische Anwendungen von Bedeutung sein, so z.B. für Baumaterial wie Zement. Als weiteres Beispiel könnten AAOs, die die heterogene Nukleation unterdrücken (Porendurchmesser ≤ 35 nm) als Filter für Reinstwasser zum Einsatz kommen.rnNun zur Anfangs gestellten Frage: Wie unterschiedlich sind Wasser und Polymerkristallisation voneinander unter räumlicher Einschränkung? Durch Vergleich der beiden Phasendiagramme kommen wir zu dem Schluss, dass beide nicht fundamental verschieden sind. Dies ist zunächst verwunderlich, da Wasser ein kleines Molekül ist und wesentlich kleiner als die kleinste Porengröße ist. Wasser verfügt allerdings über starke Wasserstoffbrückenbindungen und verhält sich daher wie ein Polymer. Daher auch der Name „Polywasser“.
Resumo:
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
We derive gap equations for superconductivity in coexistence with ferromagnetism. We treat singlet and triplet states With either equal spin pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of these states as a function of exchange splitting. For the s-wave singlet state we find that our gap equations correctly reproduce the Clogston-Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger-Sarma equation (excluding the FFLO region). The singlet superconducting order parameter is shown to be independent of exchange splitting at zero temperature, as is assumed in the derivation of the Clogston-Chandrasekhar limit. P-wave triplet states of the OSP type behave similarly to the singlet state as a function of exchange splitting. On the other hand, ESP triplet states show a very different behaviour. In particular, there is no Clogston-Chandrasekhar limiting and the superconducting critical temperature, T-C, is actually increased by exchange splitting.
Resumo:
Mesostructured titania thin films were prepared by an evaporation-induced self-assembly process. The highly acidic sot precursors contained titanium(IV) tetraisopropoxide (TTIP) as a titanium source, a tri-block copolymer Pluronic P123 as a template, and acetylacetonate and HCl as hydrolysis inhibitors. Characteristics of the resultant titania thin films were studied using X-ray diffraction (XRD) analysis, N-2-adsorption/desorption analysis, and transmission electron microscopy (TEM). XRD and TEM investigations on the as-synthesised films revealed the appearance of cubic-like, pseudohexagonal, and lamellar mesophases; depending on the amount of water in the sols of film precursors. Template removal by a calcination process yields high surface area (320-360 m(2)/g) mesoporous materials with crystalline anatase frameworks. Water content also influences the degree of anatase crystallinity of the calcined films. Higher water content resulted in improved anatase crystallinity. These nanostructured materials are of interest for photocatalysts, pbotoelectrochemical solar cells and other photonic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.
Resumo:
The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so-called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic-angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modeled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.
Resumo:
We theoretically study thermal transport in an electronic interferometer comprising a parallel circuit of two quantum dots, each of which has a tunable single electronic state which are connected to two leads at different temperature. As a result of quantum interference, the heat current through one of the dots is in the opposite direction to the temperature gradient. An excess heat current flows through the other dot. Although locally, heat flows from cold to hot, globally the second law of thermodynamics is not violated because the entropy current associated with heat transfer through the whole device is still positive. The temperature gradient also induces a circulating electrical current, which makes the interferometer magnetically polarized.
Resumo:
The metallic state of high-temperature copper-oxide superconductors, characterized by unusual and distinct temperature dependences in the transport properties(1-4), is markedly different from that of textbook metals. Despite intense theoretical efforts(5-11), our limited understanding is impaired by our inability to determine experimentally the temperature and momentum dependence of the transport scattering rate. Here, we use a powerful magnetotransport probe to show that the resistivity and the Hall coefficient in highly doped Tl2Ba2CuO6+delta originate from two distinct inelastic scattering channels. One channel is due to conventional electron electron scattering; the other is highly anisotropic, has the same symmetry as the superconducting gap and a magnitude that grows approximately linearly with temperature. The observed form and anisotropy place tight constraints on theories of the metallic state. Moreover, in heavily doped non-superconducting La2-xSrxCuO4, this anisotropic scattering term is absent(12), suggesting an intimate connection between the origin of this scattering and superconductivity itself.