909 resultados para 230202 Stochastic Analysis and Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aims to provide a deeper understanding of thermally driven turbulence and to address some modelling aspects related to the physics of the flow. For this purpose, two idealized systems are investigated by Direct Numerical Simulation: the rotating and non-rotating Rayleigh-Bénard convection. The preliminary study of the flow topologies shows how the coherent structures organise into different patterns depending on the rotation rate. From a statistical perspective, the analysis of the turbulent kinetic energy and temperature variance budgets allows to identify the flow regions where the production, the transport, and the dissipation of turbulent fluctuations occur. To provide a multi-scale description of the flows, a theoretical framework based on the Kolmogorov and Yaglom equations is applied for the first time to the Rayleigh-Bénard convection. The analysis shows how the spatial inhomogeneity modulates the dynamics at different scales and wall-distances. Inside the core of the flow, the space of scales can be divided into an inhomogeneity-dominated range at large scales, an inertial-like range at intermediate scales and a dissipative range at small scales. This classic scenario breaks close to the walls, where the inhomogeneous mechanisms and the viscous/diffusive processes are important at every scale and entail more complex dynamics. The same theoretical framework is extended to the filtered velocity and temperature fields of non-rotating Rayleigh-Bénard convection. The analysis of the filtered Kolmogorov and Yaglom equations reveals the influence of the residual scales on the filtered dynamics both in physical and scale space, highlighting the effect of the relative position between the filter length and the crossover that separates the inhomogeneity-dominated range from the quasi-homogeneous range. The assessment of the filtered and residual physics results to be instrumental for the correct use of the existing Large-Eddy Simulation models and for the development of new ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearest–neighbour balance is considered a desirable property for an experiment to possess in situations where experimental units are influenced by their neighbours. This paper introduces a measure of the degree of nearest–neighbour balance of a design. The measure is used in an algorithm which generates nearest–neighbour balanced designs and is readily modified to obtain designs with various types of nearest–neighbour balance. Nearest–neighbour balanced designs are produced for a wide class of parameter settings, and in particular for those settings for which such designs cannot be found by existing direct combinatorial methods. In addition, designs with unequal row and column sizes, and designs with border plots are constructed using the approach presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter is concerned with acquisition and analysis of test data for determining whether or not the flexural strength of granite cladding under extreme conditions is adequate to assure that reliability requirements are satisfied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall examine a model, first studied by Brockwell et al. [Adv Appl Probab 14 (1982) 709.], which can be used to describe the longterm behaviour of populations that are subject to catastrophic mortality or emigration events. Populations can suffer dramatic declines when disease, such as an introduced virus, affects the population, or when food shortages occur, due to overgrazing or fluctuations in rainfall. However, perhaps surprisingly, such populations can survive for long periods and, although they may eventually become extinct, they can exhibit an apparently stationary regime. It is useful to be able to model this behaviour. This is particularly true of the ecological examples that motivated the present study, since, in order to properly manage these populations, it is necessary to be able to predict persistence times and to estimate the conditional probability distribution of population size. We shall see that although our model predicts eventual extinction, the time till extinction can be long and the stationary exhibited by these populations over any reasonable time scale can be explained using a quasistationary distribution. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a tandem system of machines separated by infinitely large buffers. The machines process a continuous flow of products, possibly at different speeds. The life and repair times of the machines are assumed to be exponential. We claim that the overflow probability of each buffer has an exponential decay, and provide an algorithm to determine the exact decay rates in terms of the speeds and the failure and repair rates of the machines. These decay rates provide useful qualitative insight into the behavior of the flow line. In the derivation of the algorithm we use the theory of Large Deviations.