919 resultados para 2-d Motion Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a realistic simulator for the Computed Tomography (CT) scan process for motion analysis. In fact, we are currently developing a new framework to find small motion from the CT scan. In order to prove the fidelity of this framework, or potentially any other algorithm, we present in this paper a simulator to simulate the whole CT acquisition process with a priori known parameters. In other words, it is a digital phantom for the motion analysis that can be used to compare the results of any related algorithm with the ground-truth realistic analytical model. Such a simulator can be used by the community to test different algorithms in the biomedical imaging domain. The most important features of this simulator are its different considerations to simulate the best the real acquisition process and its generality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracranial aneurysms are a common pathologic condition with a potential severe complication: rupture. Effective treatment options exist, neurosurgical clipping and endovascular techniques, but guidelines for treatment are unclear and focus mainly on patient age, aneurysm size, and localization. New criteria to define the risk of rupture are needed to refine these guidelines. One potential candidate is aneurysm wall motion, known to be associated with rupture but difficult to detect and quantify. We review what is known about the association between aneurysm wall motion and rupture, which structural changes may explain wall motion patterns, and available imaging techniques able to analyze wall motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Entretiens (grec ancien-français). 1975]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we consider the transient stability of coupled motions of a 2 D.O.F. nonlinear oscillator that can represent, for example, the motions of a sea vessel under the action of trains of regular lateral waves. Instability is studied as the escape of the system from a safe potential well. The set of initial conditions in phase space that lead to acceptable motions constitutes its safe basin. We investigate the evolution of these safe basins under variation of parameters such as frequency and amplitude of waves, and an internal tuning parameter. Complex nonlinear phenomena are known to play an important role in determining the loss of safe basins as, say, wave amplitude is increased. We therefore investigate those processes, and attempt to classify them in terms of their speed relative to changes in parameter values. "Mechanism basins" are produced depicting regions of parameter space in which rapid or slow losses of safe basin are observed. We propose that a comprehensive understanding of mechanisms of loss of safe basins can be a valuable tool in assessing stability properties of these systems, and we give a conceptual view of how such information could be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Document dans la collection Archives en mouvement. Sous la direction d'Yvon Lemay, la collection vise à explorer la diffusion par l'utilisation de documents d'archives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images