968 resultados para 2 DIMENSIONS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10(13.5) solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ACDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity > 80% for the redshift range up to similar to 1 and mass range down to similar to 10(13.5) solar masses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we study the asymptotic behavior of (2+1)-dimensional quantum electrodynamics in the infrared region. We show that an appropriate redefinition of the fermion current operator leads to an asymptotic evolution operator that contains a divergent Coulomb phase factor and a contribution from the electromagnetic field at large distances, factored from the evolution operator for free fields, and we conclude that the modified scattering operator maps two spaces of coherent states of the electromagnetic field, as in the Kulish-Faddeev model for QED (quantum electrodynamics) in four space-time dimensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED 3 with massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular configuration of the background gauge field, namely a constant magnetic field and a time-dependent time component of the background gauge field. Our results allow us to compute exactly physically interesting quantities such as the induced charge density and fermion condensate whose dependence on the temperature, fermion mass and gauge field is discussed. ©1999 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We calculate the effective action for quantum electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson. We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e2/m. ©2000 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach. © SISSA 2006.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A precise radiographic evaluation of the local bone dimensions and morphology is important for preoperative planning of implant placement. The purpose of this retrospective study was to analyze dimensions and morphology of edentulous sites in the posterior mandible using cone beam computed tomography (CBCT) images. This retrospective radiographic study measured the bone width (BW) of the mandible at three locations on CBCT scans for premolars (PM1, PM2) and molars (M1, M2): at 1 mm and 4 mm below the most cranial point of the alveolar crest (BW1, BW2) and at the superior border of the mandibular canal (BW3). Furthermore, the height (H) of the alveolar process (distance between the measuring points BW1 and BW3), as well as the presence of lingual undercuts, were analyzed. A total of 56 CBCTs met the inclusion criteria, resulting in a sample size of 127 cross sections. There was a statistically significant increase from PM1 to M2 for the BW2 (P < .001), which was not present for BW1 and BW3 values. For the height of the alveolar process, the values exhibited a decrease from PM1 to M2 sites. Sex was a statistically significant parameter for H (P = .001) and for BW1 (P = .03). Age was not a statistically significant parameter for bone width (BW1: P = .37; BW2: P = .31; BW3: P = .51) or for the height of the alveolar process (P = .41) in the posterior mandible. Overall, 73 (57.5%) edentulous sites were evaluated to be without visible lingual undercuts; 13 (10.2%) sites exhibited lingual undercuts classified as influential for implant placement. Precise evaluation of the alveolar crest by cross-sectional imaging is of great value to analyze vertical and buccolingual bone dimensions in different locations in the posterior mandible. In addition, CBCTs are valuable to diagnosing the presence of and potential problems caused by lingual undercuts prior to implant placement.