980 resultados para 2,4,6-Trinitrotoluene (TNT) sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[GRAPHICS] The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus are 4,6,8,10,16-penta- and 4,6,8,10,16,18-hexamethyldocosanes, I and 2, respectively. Stereoisomers of 2,4,6,8-tetramethylundecanal of established relative stereochemistry were derived from 2,4,6-trimethylphenol and were then coupled with appropriate methyl-substituted phosphoranes 62 and 25 to furnish alkenes, which on reduction provided diastereomers of I and 2, respectively. Capillary gas chromatography, mass spectrometry, and high resolution C-13 NMR spectroscopy confirmed 1 as either 84a or 84b and 2 as either 15a or 15b. The novelty of these structures and their relative stereochemistry is briefly related to polyketide assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1,3-dioxin-4-one ring in the title compound, C(16)H(16)O(3), is in a half-boat conformation with the quaternary O-C(CH(3))(2)-O atom lying 0.546 (1) angstrom out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C-H center dot center dot center dot O contacts that lead to supramolecular layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure analysis of the title compound, C(14)H(16)O(2)S(2), shows the SMe and H atoms of the bond linking the six-membered rings to be syn and also to be syn to the bridgehead -CH(2)- group. Each of the five-membered rings adopts an envelope conformation at the bridgehead -CH(2)- group. The dione-substituted ring adopts a folded conformation about the 1,4-C center dot center dot center dot C vector, with the ketone groups lying to one side. The cyclohexene ring adopts a boat conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title compound, C(22)H(14)N(2)O(2), the five rings of the molecule are not coplanar. There is a significant twist between the four fused rings, which have a slightly arched conformation, and the pendant aromatic ring, as seen in the dihedral angle of 13.16 (8)degrees between the anthraquinonic ring system and the pendant aromatic ring plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title compound, C13H14N2O7, steric crowding around the aromatic ring results in significant out-of-plane twisting of the nitro, methoxy, acetoxy and 2-nitropropenyl functional groups. These distortions are explained by comparison with less congested substituted benzene analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars 'Essex' and 'Williams.' DNA was extracted from F-2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F-2 and F-4:6 generation. For the F-2 population, significant additive QTL were Satt540 (MLG M, maturity, r(2)=0.11; height, r(2)=0.04, seed size, r(2)=0.061, Satt373 (MLG L, seed size, r(2)=0.04; height, r(2)=0.14), Satt50 (MLG A1, maturity r(2)=0.07), Satt14 (MLG D2, oil, r(2)=0.05), and Satt251 (protein r(2)=0.03, oil, r(2)=0.04). Significant dominant QTL for the F-2 population were Satt540 (MLG M, height, r(2)=0.04; seed size, r(2)=0.06) and Satt14 (MLG D2, oil, r(2)=0.05). In the F-4:6 generation significant additive QTL were Satt239 (MLG I, height, r(2)=0.02 at Knoxville, TN and r(2)=0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r(2)=0.14 at Knoxville, TN), Satt373 (MLG L, protein, r(2)=0.04 at Knoxville, TN) and Satt251 (MLG B I, lodging r(2)=0.04 at Springfield, TN). Averaged over both environments in the F-4:6 generation, significant additive QTL were identified as Satt251 (MLG B 1, protein, r(2)=0.03), and Satt239 (MLG 1, height, r(2)=0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r(2) values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regiospecific bromination of 2,4,4-trimethyl-cyclohex-2-enone was achieved and the X-ray crystal structure of 6-bromo-2,4,4-trimethyl-cyclohex-2-enone is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccination of infants with conjugated Haemophilus influenzae type b (Hib) vaccines has been proven to reduce Hib meningitis by 95% and pneumoniae by 20%. The routine use of Hib vaccine is facilitated by the introduction of combination vaccines into the EPI (Expanded Plan of Immunization). The objective of this study was to compare the immunogenicity and reactogenicity of an extemporaneously mixed DTPw/Hib (diphtheria-tetanus-whole cell pertussis) combination, using the technology of two Brazilian manufacturers, against a licensed DTPw/Hib European combination in 108 infants vaccinated at 2, 4 and 6 months according to the local national schedule. The Brazilian combination was highly immunogenic with Hib seroprotection rates (anti-PRP > 0.15 mg /ml of 98% after 2 doses and 100% after 3). Also for tetanus and pertussis the new Brazilian combination was as immunogenic as the European counterpart, except the diphtheria seroprotection rates and titers were lower. There was also no clinically relevant difference in reactogenicity. If these feasibility results are confirmed, the Brazilian DTPw/Hib combination should help to boost the uptake of Hib vaccination in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2013