999 resultados para 198-1209B


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene-Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest delta 13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity. Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm-oligotrophic scenario with a high degree of complexity in the ocean structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4° to 5°C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release. A switch to deep convection in the North Pacific at the PETM onset could have amplified and sustained warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Size measurements of the calcareous nannofossil taxon Discoaster multiradiatus were carried out across the Paleocene-Eocene Thermal Maximum (PETM) in Ocean Drilling Program Holes 690B (Maud Rise, Weddell Sea) and 1209B (Shatsky Rise, Pacific Ocean). Morphometric investigations show that D. multiradiatus specimens are generally larger at ODP Site 1209 than at ODP Site 690. A limited increase in size of D. multiradiatus is recorded at ODP Site 1209, whereas significant enlargements characterize ODP Site 690. Preservation is comparable at both sites: nannofossils are moderately preserved with some evidence of etching/overgrowth in the PETM interval. Yet, D. multiradiatus variations do not correlate with preservation state and morphometric data most likely represent primary signals rather than diagenetic artifacts. There is a direct relationship between D. multiradiatus size and paleotemperatures: largest specimens are coeval with global warming associated with the PETM, inferred to result from excess atmospheric CO2 due to (partial) oxidation of massive quantities of methane. Size increases and largest specimens of D. multiradiatus occur at different stratigraphic levels within PETM at ODP Sites 690 and 1209. A marked shift in diameter size was observed at the onset and peak of the Carbon Isotopic Excursion (CIE) at ODP Site 690, but only at the end of CIE and initial recovery interval at ODP Site 1209. This diachroneity is puzzling, but indeed correlates well with reconstructed changes in surface and thermocline water masses temperature and salinity in the PETM interval at low and high latitudes. The presumed high concentrations of carbon dioxide seem to have not influenced the morphometry of D. multiradiatus. The major size increase of D. multiradiatus in the CIE of ODP Site 690 could represent the migration of larger-sized allochtonus specimens that moved from peri-equatorial/subtropical areas to higher latitudes during the warmest interval of the PETM, although no direct evidence of distinct populations/subpopulations has been obtained from the frequency diagrams. As a result, we infer that D. multiradiatus is a proxy of water masses stratification and might be used for deriving temperature-salinity-nutrient conditions in the mixed layer and thermocline and their dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Consultant Contract 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bureau of Nutrition and Health Promotion part of the Iowa Department of Public Health produces of weekly newsletter about the Iowa WIC Program for the State of Iowa citizen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This final report summarizes the activities of the archaeological surveys contract for primary roads, secondary roads, and urban systems. The contract is negotiated annually between the Iowa Department of Transportation and the University of Iowa. The information contained is composed of summaries abstracted from completed cultural resource reports on file with the Department of Transportation, the Office of Historic Preservation, and the Office of the State Archaeologist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This final report summarizes the activities of the archaeological surveys contract for primary roads, secondary roads, and urban systems. The contract is negotiated annually between the Iowa Department of Transportation and the University of Iowa. The information contained in this section of the report is composed of summaries abstracted from completed cultural resource reports on file with the Department of Transportation, the Office of Historic Preservation, and the Office of the State Archaeologist.