993 resultados para 198-1209A


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A pulse of intense carbonate dissolution occurred during the early late Paleocene at 58.4 Ma. A prominent 5 to 25 cm-thick dark brown clay-rich calcareous nannofossil ooze was found on Shatsky Rise at Sites 1209, 1210, 1211, and 1212 during Ocean Drilling Program Leg 198. The layer corresponds to the lower part of planktonic foraminiferal Zone P4 and coincides with the evolutionary first occurrence of the nannolith Heliolithus kleinpellii, an important component of late Paleocene assemblages and a marker for the base of Zone CP5. The clay-rich layer contains common crystals of phillipsite, fish teeth, and phosphatic micronodules and corresponds to a prominent peak in magnetic susceptibility that probably reflects these high amounts of detrital and authigenic materials. Detailed quantitative analysis of planktonic foraminiferal assemblages across the clay-rich nannofossil ooze layer shows that fundamental changes in faunal composition occurred before, during, and after deposition of the clay-rich ooze. Planktonic foraminifers in the clay-rich layer are characterized by a low-diversity, largely dissolved assemblage dominated by representatives of the genus Igorina (mainly Igorina tadjikistanensis and Igorina pusilla). Conversely, Igorina albeari, morozovellids, acarininids, globanomalinids, subbotinids, and chiloguembelinids are common below the clay-rich layer, almost disappear within it, and reappear in low abundances above the clay-rich layer. These changes in faunal compositions are likely a response to a change in carbonate saturation that caused increased dissolution on the seafloor owing to the shoaling of the lysocline and the carbonate compensation depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barite accumulation rates (BAR) have been measured from 12 DSDP/ODP site globally (DSDP site 525, 549 and ODP site 690, 738, 1051, 1209, 1215, 1220, 1221, 1263,1265 and 1266A) to reconstruct the export production across Paleocene Eocene Thermal Maximum (PETM) around 55.9 million year ago. Our results suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the PETM. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the PETM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present new isotopic and micropaleontological data from a depth transect on Shatsky Rise that record the response of the tropical Pacific to global biotic and oceanographic shifts during the mid-Maastrichtian. Results reveal a coupling between the upper ocean, characterized by a weak thermocline and low to intermediate productivity, and intermediate waters. During the earliest Maastrichtian, oxygen and neodymium isotope data suggest a significant contribution of relatively warm intermediate water from the North Pacific. Isotopic shifts through the early Maastrichtian suggest that this warmer water mass was gradually replaced by cooler waters originating in the Southern Ocean. Although the cooler water mass remained dominant through the remainder of the Maastrichtian, it was displaced intermittently at shallow intermediate depths by North Pacific intermediate water. The globally recognized "mid-Maastrichtian event" ~69 Ma, manifested by the brief appearance of abundant inoceramid bivalves over shallow portions of Shatsky Rise, is characterized by an abrupt increase (~2°-3°C) in sea surface temperatures, a greater flux of organic matter out of the surface ocean, and warmer (~4°C) intermediate waters. Results implicate simultaneous changes in surface waters and the sources/distribution patterns of intermediate water masses as an underlying cause for widespread biotic and oceanographic changes during mid-Maastrichtian time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 198 of the Ocean Drilling Program (ODP), Paleogene sediments were recovered form 10 holes at four sites along a bathymetric transect from the Southern High of Shatsky Rise. In terms of age, the Paleogene successions span from the Cretaceous/Paleocene boundary to the early Oligocene. Sediments are mainly composed of tan nannofossil ooze with scattered darker layers richer in clay. This data report concerns planktonic foraminiferal biostratigraphy from three holes, specifically Hole 1209A (water depth = 2387 m), Hole 1210A (water depth = 2573 m), and Hole 1211A (water depth = 2907 m). The thickness of Paleogene sediments is 105.90 m in Hole 1209A, 95.05 m in Hole 1210A, and 56.11 m in the deepest Hole 1211A. Preliminary investigations conducted on board revealed that at Site 1209 the succession was mostly complete, whereas the succession was more condensed at Site 1211.

Relevância:

30.00% 30.00%

Publicador: