994 resultados para 177-1090
Resumo:
At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25~16 Ma) at a temporal resolution of ?10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the d18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The d13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through the Drake Passage in agreement with bathymetric reconstructions.
Resumo:
The Agulhas Ridge, off the tip of Africa between the Atlantic and Indian Oceans, is ideally located to capture the evolution of Paleogene-early Neogene circulation patterns associated with global cooling. Multiproxy records of productivity (biogenic barium (Baex), opal, CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox state of deep waters (U enrichment) from Ocean Drilling Program (ODP) Site 1090 reflect hydrographic shifts in this region between the middle Eocene and early Oligocene (~9-33 Ma). Several peaks in increased export productivity and burial of organic matter occurred within the late Eocene (~36.5, ~34, and ~33.7 Ma), which along with surface hydrologic conditions favoring opaline organisms over calcareous organisms could have aided in the draw down of pCO2 to a threshold level that facilitated large ice sheet development on Antarctica in the earliest Oligocene. Our multiproxy approach illustrates the importance of vertical as well as spatial hydrographic reorganization in amplifying or driving climatic cooling of the middle Eocene to early Oligocene by facilitating increases in the relative or absolute burial of organic carbon.
Resumo:
The cold upwelling 'tongue' of the eastern equatorial Pacific is a central energetic feature of the ocean, dominating both the mean state and temporal variability of climate in the tropics and beyond. Recent evidence for the development of the modern cold tongue during the Pliocene-Pleistocene transition has been explained as the result of extratropical cooling that drove a shoaling of the thermocline. We have found that the sub-Antarctic and sub-Arctic regions underwent substantial cooling nearly synchronous to the cold tongue development, thereby providing support for this hypothesis. In addition, we show that sub-Antarctic climate changed in its response to Earth's orbital variations, from a subtropical to a subpolar pattern, as expected if cooling shrank the warm-water sphere of the ocean and thus contracted the subtropical gyres.
Resumo:
Neodymium (Nd) isotopes were measured on 181 samples of fossil fish teeth recovered from Oligocene to Miocene sections at Ocean Drilling Program Site 1090 (3700 m water depth) on Agulhas Ridge in the Atlantic sector of the Southern Ocean. A long-term decreasing trend toward less radiogenic Nd isotope compositions dominates the record. This trend is interrupted by shifts toward more radiogenic compositions near the early/late Oligocene boundary and the Oligocene/Miocene boundary. Overall, epsilon-Nd values at Agulhas Ridge are more radiogenic than at other Atlantic locations, and are similar to those at Indian Ocean locations. The pattern of variability is remarkably similar to Nd isotope results from Walvis Ridge (South Atlantic) and Ninetyeast Ridge (Indian Ocean). In contrast, Agulhas Ridge and Maud Rise Nd isotope records do not show similar patterns over this interval. Results from this study indicate that deep water in the Atlantic flowed predominantly from north to south during the Oligocene and Miocene, and that export of Northern Component Water (NCW) to the Southern Ocean increased in the late Oligocene. There is also evidence for efficient exchange of deep waters between the Atlantic sector of the Southern Ocean and the Indian Ocean, although the direction of deep water flow is not entirely clear from these data. The shifts to more radiogenic Nd isotopic compositions most likely represent increases in the flux of Pacific waters through Drake Passage, and the timing of these events reflect development of a mature Antarctic Circumpolar Current (ACC). The relative timing of increased NCW export and ACC maturation support hypotheses that link deep water formation in the North Atlantic to the opening of Drake Passage.
Resumo:
Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene-bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177-1090B-30X-5,105-106 (954 pg/g) and the net Ir fluence (14 ng/cm**2) at this site are higher than at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.
Resumo:
Ocean Drilling Program (ODP) Site 1090, on the Agulhas Ridge in the South Atlantic sector of the Southern Ocean, is ideally located to capture changes in Southern Ocean circulation patterns. Using samples taken from cored sediments, we construct multiproxy records of productivity (biogenic barium (Baex), opal, and CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox conditions (U and Mn enrichments) to investigate hydrographic conditions associated with climatic shifts from the Oligocene through the early Miocene. Orbitally induced cyclicity in U and Mn enrichments (100 kyr) suggests shifts in deepwater characteristics. However, CaCO3 dissolution coincident with low U and Mn enrichments does not indicate low-oxygen, corrosive waters similar to modern conditions. These observations indicate that a well-developed "modern-type" Antarctic Circumpolar Current (ACC) did not yet exist over the period from 30 to 20 Ma, with two potential consequences: The Southern Ocean was not functioning as a silica trap, permitting a broader distribution of silica that may have facilitated organic carbon burial in the ocean in general, and the lack of a deeply mixing ACC may have facilitated organic carbon burial in the Southern Ocean. Both the relative (high opal MARs coincident with low CaCO3 MARs) and absolute (high Pr MARs) burial of organic carbon suggest a powerful mechanism for pCO2 drawdown.
Resumo:
Seven sites were drilled during Ocean Drilling Program Leg 177 in the Atlantic sector of the Southern Ocean (SO) on a transect over the Antarctic Circumpolar Current from the Subantarctic to the Antarctic Zone. At four sites sediments were recovered with a Pliocene/Pleistocene sediment package of up to 580 m allowing the refinement of previous diatom zonation concepts. Samples were analyzed on stratigraphic distribution and abundance of diatom species. A refined diatom biozonation tied to the geomagnetic polarity record is proposed. For the middle and late Pleistocene two zonations applicable to the northern and southern area of the SO were constructed, considering different latitudinal distributions of biostratigraphic diatom marker species. The southern zonation for the Pleistocene relies on the occurrence of species of the genus Rouxia, R. leventerae and R. constricta n. sp. as well as on a revised last occurrence datum (LOD) of Actinocyclus ingens (0.38 Ma, late marine isotope stage (MIS) 11). The use of these new stratigraphic marker species refines the temporal resolution for biostratigraphic age assignment to up to 0.1 Myr. In particular the LOD of R. leventerae as an indicator for the MIS 6/5 boundary (Termination II) will improve future dating of carbonate-free Antarctic sediments. These new data were obtained from sediments of Sites 1093 and 1094 (Antarctic Zone). The northern zonation for the middle and late Pleistocene time interval is based on the Pleistocene abundance pattern of Hemidiscus karstenii which was already proposed by previous investigations (e.g. Gersonde and Barcena, 1998). One new species (R. constricta) and two new combinations (Fragilariopsis clementia, Fragilariopsis reinholdii) are proposed in this study.
Resumo:
While onboard ship during Leg 177, we used variations in sediment physical properties (mainly percent color reflectance) in conjunction with biomagnetostratigraphy to correlate among sites and predict the position of marine isotope stages (MISs) (e.g., see fig. F11 in Shipboard Scientific Party, 1999, p. 45). Our working assumption was that physical properties of Leg 177 sediments are controlled mainly by variations in carbonate content. Previous studies of Southern Ocean sediment cores have shown that carbonate concentrations are relatively high during interglacial stages and low during glacial stages at sites located within the Polar Frontal Zone (PFZ). Today, the PFZ marks a lithologic boundary in underlying sediment separating calcareous oozes to the north and silica-rich facies to the south (Hays et al., 1976). Although there is debate whether the position of the "physical" PFZ actually moved during glacial-interglacial cycles (Charles and Fairbanks, 1990; Matsumoto et al., 2001), the "biochemical" PFZ, as expressed by the CaCO3/opal boundary in sediments, certainly migrated north during glacials and south during interglacials. This gave rise to lithologic variations that are useful for stratigraphic correlation. At Leg 177 sites located north of the PFZ and at sublysoclinal depths, we expected the same pattern of carbonate variation because cores in the Atlantic basin are marked by increased carbonate dissolution during glacial periods and increased preservation during interglacials (Crowley, 1985).
Resumo:
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A reentry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r,synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.
Resumo:
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.
Resumo:
Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.