982 resultados para 1530


Relevância:

20.00% 20.00%

Publicador:

Resumo:

601 p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many products and have been detected in human samples worldwide. Limited data show that concentrations are elevated in young children. Objectives: We investigated the association between PBDEs and age with an emphasis on young children from Australia in 2006–2007. Methods: We collected human blood serum samples (n = 2,420), which we stratified by age and sex and pooled for analysis of PBDEs. Results: The sum of BDE-47, -99, -100, and -153 concentrations (Σ4PBDE) increased from 0–0.5 years (mean ± SD, 14 ± 3.4 ng/g lipid) to peak at 2.6–3 years (51 ± 36 ng/g lipid; p < 0.001) and then decreased until 31–45 years (9.9 ± 1.6 ng/g lipid). We observed no further significant decrease among ages 31–45, 45–60 (p = 0.964), or > 60 years (p = 0.894). The mean Σ4PBDE concentration in cord blood (24 ± 14 ng/g lipid) did not differ significantly from that in adult serum at ages 15–30 (p = 0.198) or 31–45 years (p = 0.140). We found no temporal trend when we compared the present results with Australian PBDE data from 2002–2005. PBDE concentrations were higher in males than in females; however, this difference reached statistical significance only for BDE-153 (p = 0.05). Conclusions: The observed peak concentration at 2.6–3 years of age is later than the period when breast-feeding is typically ceased. This suggests that in addition to the exposure via human milk, young children have higher exposure to these chemicals and/or a lower capacity to eliminate them. Key words: Australia, children, cord blood, human blood serum, PBDEs, polybrominated diphenyl ethers. Environ Health Perspect 117:1461–1465 (2009). doi:10.1289/ehp.0900596

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/objectives The provision of the patient bed-bath is a fundamental nursing care activity yet few quantitative data and no qualitative data are available on registered nurses’ (RNs) clinical practice in this domain in the intensive care unit (ICU). The aim of this study was to describe ICU RNs current practice with respect to the timing, frequency and duration of the patient bed-bath and the cleansing and emollient agents used. Methods The study utilised a two-phase sequential explanatory mixed method design. Phase one used a questionnaire to survey RNs and phase two employed semi-structured focus group (FG) interviews with RNs. Data was collected over 28 days across four Australian metropolitan ICUs. Ethical approval was granted from the relevant hospital and university human research ethics committees. RNs were asked to complete a questionnaire following each episode of care (i.e. bed-bath) and then to attend one of three FG interviews: RNs with less than 2 years ICU experience; RNs with 2–5 years ICU experience; and RNs with greater than 5 years ICU experience. Results During the 28-day study period the four ICUs had 77.25 beds open. In phase one a total of 539 questionnaires were returned, representing 30.5% of episodes of patient bed-baths (based on 1767 bed occupancy and one bed-bath per patient per day). In 349 bed-bath episodes 54.7% patients were mechanically ventilated. The bed-bath was given between 02.00 and 06.00 h in 161 episodes (30%), took 15–30 min to complete (n = 195, 36.2%) and was completed within the last 8 h in 304 episodes (56.8%). Cleansing agents used were predominantly pH balanced soap or liquid soap and water (n = 379, 71%) in comparison to chlorhexidine impregnated sponges/cloths (n = 86, 16.1%) or other agents such as pre-packaged washcloths (n = 65, 12.2%). In 347 episodes (64.4%) emollients were not applied after the bed-bath. In phase two 12 FGs were conducted (three FGs at each ICU) with a total of 42 RN participants. Thematic analysis of FG transcripts across the three levels of RN ICU experience highlighted a transition of patient hygiene practice philosophy from shades of grey – falling in line for inexperienced clinicians to experienced clinicians concrete beliefs about patient bed-bath needs. Conclusions This study identified variation in process and products used in patient hygiene practices in four ICUs. Further study to improve patient outcomes is required to determine the appropriate timing of patient hygiene activities and cleansing agents used to improve skin integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Alcohol craving is associated with greater alcohol-related problems and less favorable treatment prognosis. The Obsessive Compulsive Drinking Scale (OCDS) is the most widely used alcohol craving instrument. The OCDS has been validated in adults with alcohol use disorders (AUDs), which typically emerge in early adulthood. This study examines the validity of the OCDS in a nonclinical sample of young adults. Methods: Three hundred and nine college students (mean age of 21.8 years, SD = 4.6 years) completed the OCDS, Alcohol Use Disorders Identification Test (AUDIT), and measures of alcohol consumption. Subjects were randomly allocated to 2 samples. Construct validity was examined via exploratory factor analysis (n = 155) and confirmatory factor analysis (n = 154). Concurrent validity was assessed using the AUDIT and measures of alcohol consumption. A second, alcohol-dependent sample (mean age 42 years, SD 12 years) from a previously published study (n = 370) was used to assess discriminant validity. Results: A unique young adult OCDS factor structure was validated, consisting of Interference/Control, Frequency of Obsessions, Alcohol Consumption and Resisting Obsessions/Compulsions. The young adult 4-factor structure was significantly associated with the AUDIT and alcohol consumption. The 4 factor OCDS successfully classified nonclinical subjects in 96.9% of cases and the older alcohol-dependent patients in 83.7% of cases. Although the OCDS was able to classify college nonproblem drinkers (AUDIT <13, n = 224) with 83.2% accuracy, it was no better than chance (49.4%) in classifying potential college problem drinkers (AUDIT score ≥13, n = 85). Conclusions: Using the 4-factor structure, the OCDS is a valid measure of alcohol craving in young adult populations. In this nonclinical set of students, the OCDS classified nonproblem drinkers well but not problem drinkers. Studies need to further examine the utility of the OCDS in young people with alcohol misuse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: There has been some difficulty getting standard laboratory rats to voluntarily consume large amounts of ethanol without the use of initiation procedures. It has previously been shown that standard laboratory rats will voluntarily consume high levels of ethanol if given intermittent-access to 20% ethanol in a 2-bottle-choice setting [Wise, Psychopharmacologia 29 (1973), 203]. In this study, we have further characterized this drinking model. METHODS: Ethanol-naïve Long-Evans rats were given intermittent-access to 20% ethanol (three 24-hour sessions per week). No sucrose fading was needed and water was always available ad libitum. Ethanol consumption, preference, and long-term drinking behaviors were investigated. Furthermore, to pharmacologically validate the intermittent-access 20% ethanol drinking paradigm, the efficacy of acamprosate and naltrexone in decreasing ethanol consumption were compared with those of groups given continuous-access to 10 or 20% ethanol, respectively. Additionally, ethanol consumption was investigated in Wistar and out-bred alcohol preferring (P) rats following intermittent-access to 20% ethanol. RESULTS: The intermittent-access 20% ethanol 2-bottle-choice drinking paradigm led standard laboratory rats to escalate their ethanol intake over the first 5 to 6 drinking sessions, reaching stable baseline consumption of high amounts of ethanol (Long-Evans: 5.1 +/- 0.6; Wistar: 5.8 +/- 0.8 g/kg/24 h, respectively). Furthermore, the cycles of excessive drinking and abstinence led to an increase in ethanol preference and increased efficacy of both acamprosate and naltrexone in Long-Evans rats. P-rats initiate drinking at a higher level than both Long-Evans and Wistar rats using the intermittent-access 20% ethanol paradigm and showed a trend toward a further escalation in ethanol intake over time (mean ethanol intake: 6.3 +/- 0.8 g/kg/24 h). CONCLUSION: Standard laboratory rats will voluntarily consume ethanol using the intermittent-access 20% ethanol drinking paradigm without the use of any initiation procedures. This model promises to be a valuable tool in the alcohol research field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section (‘loopy’). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During growth of antral ovarian follicles granulosa cells first become associated with a novel type of extracellular matrix, focimatrix, and at larger sizes follicles become either subordinate or dominant. To examine this, bovine subordinate (9.0±s.e.m. 0.4 mm; n=16), partially dominant (12.0±0.6 mm; n=18) and fully dominant (15.0±0.4 mm; n=14) follicles were examined by real time RT-PCR analyses of granulosa cells and by immunohistochemistry of focimatrix. Changes in the expression of FSH receptor, LH receptor, cholesterol side-chain cleavage (CYP11A1), 3β-hydroxysteroid dehydrogenase, aromatase (CYP19A1) and inhibin-α and β-B were observed as expected for follicle sizes examined. After adjusting for size differences, only CYP11A1 was significantly different between the groups, and elevated in dominant follicles. Also after adjusting for differences in size there were no significant differences in expression of focimatrix components collagen type IV α-1 (COL4A1), laminin β-2, nidogen 1 (NID1), and perlecan (HSPG2) or the volume density of NID1 and -2 and HSPG2. The volume density of focimatrix components in laminin 111 was significantly elevated in dominant follicles. Adjusting for analysis of more than one follicle per animal and for multiple correlations, CYP11A1 mRNA levels were highly correlated with the focimatrix genes COL4A1, NID1 and -2 and HSPG2. Thus, focimatrix may potentially regulate CYP11A1 expression, and the regulation of both could be important in follicular dominance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used to protect the light gauge steel-framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards. However, a good understanding of the thermal behaviour of these plasterboard panels under fire conditions is not known. Therefore, 15 small-scale fire tests were conducted on plasterboard panels made of 13 and 16 mm plasterboards and four different types of insulations with varying thickness and density subject to standard fire conditions in AS 1530.4. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effects of interfaces between adjacent plasterboards. Effects of using external insulations such as glass fibre, rockwool and cellulose fibre were also determined. The thermal performance of composite panels developed from different insulating materials of varying densities and thicknesses was examined and compared. This paper presents the details of the fire tests conducted in this study and their valuable time–temperature data for the tested plasterboard panels. These data can be used for the purpose of developing and validating accurate thermal numerical models of these panels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgen-dependent pathways regulate maintenance and growth of normal and malignant prostate tissues. Androgen deprivation therapy (ADT) exploits this dependence and is used to treat metastatic prostate cancer; however, regression initially seen with ADT gives way to development of incurable castration-resistant prostate cancer (CRPC). Although ADT generates a therapeutic response, it is also associated with a pattern of metabolic alterations consistent with metabolic syndrome including elevated circulating insulin. Because CRPC cells are capable of synthesizing androgens de novo, we hypothesized that insulin may also influence steroidogenesis in CRPC. In this study, we examined this hypothesis by evaluating the effect of insulin on steroid synthesis in prostate cancer cell lines. Treatment with 10 nmol/L insulin increased mRNA and protein expression of steroidogenesis enzymes and upregulated the insulin receptor substrate insulin receptor substrate 2 (IRS-2). Similarly, insulin treatment upregulated intracellular testosterone levels and secreted androgens, with the concentrations of steroids observed similar to the levels reported in prostate cancer patients. With similar potency to dihydrotestosterone, insulin treatment resulted in increased mRNA expression of prostate-specific antigen. CRPC progression also correlated with increased expression of IRS-2 and insulin receptor in vivo. Taken together, our findings support the hypothesis that the elevated insulin levels associated with therapeutic castration may exacerbate progression of prostate cancer to incurable CRPC in part by enhancing steroidogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.