966 resultados para 152 Perception, movement, emotions, drives


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether infants from 8 ^ 22 weeks of age were sensitive to the illusory contour created by aligned line terminators. Previous reports of illusory-contour detection in infants under 4 months old could be due to infants' preference for the presence of terminators rather than their configuration. We generated preferential-looking stimuli containing sinusoidal lines whose oscillating, abutting terminators give a strong illusory contour in adult perception. Our experiments demonstrated a preference in infants 8 weeks old and above for an oscillating illusory contour compared with a stimulus containing equal terminator density and movement. Control experiments excluded local line density, or attention to alignment in general, as the basis for this result. In the youngest age group (8 ^ 10 weeks) stimulus velocity appears to be critical in determining the visibility of illusory contours, which is consistent with other data on motion processing at this age. We conclude that, by 2 months of age, the infant's visual system contains the nonlinear mechanisms necessary to extract an illusory contour from aligned terminators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that balls subjected to spin induce large errors in perceptual judgements (Craig et al, 2006; Craig et al 2009) due to the additional accelerative force that causes the ball’s flight path to deviate from a standard parabolic trajectory. A recent review however, has suggested that the findings from such experiments may be imprecise due to the decoupling of perception and action and the reliance on the ventral system (Van der Kamp et al, 2008). The aim of this study was to present the same curved free kick trajectory simulations from the perception only studies (Craig et al, 2006; Craig et al, 2009) but this time allow participants to move to intercept the ball. By using immersive, interactive virtual reality technology participants were asked to control the movement of a virtual effector presented in a virtual soccer stadium so that it would make contact with a virtual soccer ball as it crossed the goal-line. As in the perception only studies the direction of spin had a significant effect on the participants’ responses (F(2,12)=222.340; p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion-extension, forearm pronation-supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60A degrees visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A decade ago, perceiving emotion was generally equated with taking a sample (a still photograph or a few seconds of speech) that unquestionably signified an archetypal emotional state, and attaching the appropriate label. Computational research has shifted that paradigm in multiple ways. Concern with realism is key. Emotion generally colours ongoing action and interaction: describing that colouring is a different problem from categorizing brief episodes of relatively pure emotion. Multiple challenges flow from that. Describing emotional colouring is a challenge in itself. One approach is to use everyday categories describing states that are partly emotional and partly cognitive. Another approach is to use dimensions. Both approaches need ways to deal with gradual changes over time and mixed emotions. Attaching target descriptions to a sample poses problems of both procedure and validation. Cues are likely to be distributed both in time and across modalities, and key decisions may depend heavily on context. The usefulness of acted data is limited because it tends not to reproduce these features. By engaging with these challenging issues, research is not only achieving impressive results, but also offering a much deeper understanding of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceived and actual motor competence are hypothesized to have potential links to children and young people’s physical activity (PA) levels with a potential consequential link to long-term health. In this cross-sectional study, Harter’s (1985, Manual for the Self-perception Profile for Children. Denver, CO: University of Denver) Competency Motivation-based framework was used to explore whether a group of children taught, during curriculum time, by teachers trained in the Fundamental Movement Skills (FMS) programme, scored higher on self-perception and on core motor competencies when compared to children whose teachers had not been so trained. One hundred and seventy seven children aged 7–8 years participated in the study. One hundred and seven were taught by FMS-trained teachers (FMS) and the remaining 70 were taught by teachers not trained in the programme (non-FMS). The Harter Self-Perception Profile for Children assessed athletic competence, scholastic competence, global self-worth and social acceptance. Three core components of motor competence (body management, object control and locomotor skills) were assessed via child observation. The FMS group scored higher on all the self-perception domains (p < 0.05). Statistically significant differences were found between the schools on all of the motor tasks (p < 0.05). The relationships between motor performance and self-perception were generally weak and non-significant. Future research in schools and with teachers should explore the FMS programme’s effect on children’s motor competence via a longitudinal approach.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Music is a rich form of nonverbal communication, in which the movements that expert musicians make during performance can influence the perception of expressive and structural features of the music. Whether the actual skill of a musician is perceivable from vision of movement was examined. In Experiment 1, musicians and non-musicians rated performances by novice, intermediate and expert clarinettists from point-light animations of their movements, sound recordings, or both. Performances by clarinettists of more advanced skill level were rated significantly higher from vision of movements, although this effect was stronger when sound was also presented. In Experiment 2, movements and sound from the novice and expert clarinettists' performances were switched for half the presentations, and were matched for the rest. Ratings of novice music were significantly higher when presented with expert movements, although the opposite was not found for expert sound presented with novice movements. No perceptual effect of raters' own level of musicianship was found in either experiment. These results suggest that expertise is perceivable from vision of musicians' body movements, although perception of skill from sound is dominant. The results from Experiment 2 further indicate a cross-modal effect of vision and audition on the perception of musical expertise. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paradoxical kinesia describes the motor improvement in Parkinson's disease (PD) triggered by the presence of external sensory information relevant for the movement. This phenomenon has been puzzling scientists for over 60 years, both in neurological and motor control research, with the underpinning mechanism still being the subject of fierce debate. In this paper we present novel evidence supporting the idea that the key to understanding paradoxical kinesia lies in both spatial and temporal information conveyed by the cues and the coupling between perception and action. We tested a group of 7 idiopathic PD patients in an upper limb mediolateral movement task. Movements were performed with and without a visual point light display, travelling at 3 different speeds. The dynamic information presented in the visual point light display depicted three different movement speeds of the same amplitude performed by a healthy adult. The displays were tested and validated on a group of neurologically healthy participants before being tested on the PD group. Our data show that the temporal aspects of the movement (kinematics) in PD can be moderated by the prescribed temporal information presented in a dynamic environmental cue. Patients demonstrated a significant improvement in terms of movement time and peak velocity when executing movement in accordance with the information afforded by the point light display, compared to when the movement of the same amplitude and direction was performed without the display. In all patients we observed the effect of paradoxical kinesia, with a strong relationship between the perceptual information prescribed by the biological motion display and the observed motor performance of the patients. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the origins of consonance and dissonance in terms of acoustics, psychoacoustics and physiology have been debated for centuries, their plausible effects on movement synchronization have largely been ignored. The present study aims to address this by investigating whether, and if so how, consonant/dissonant pitch intervals affect the spatiotemporal properties of regular reciprocal aiming movements. We compared movements synchronized either to consonant or to dissonant sounds, and showed that they were differently influenced by the degree of consonance of the sound presented. Interestingly, the difference was present after the sound stimulus was removed. In this case, the performance measured after consonant sound exposure was found to be more stable and accurate, with a higher percentage of information/movement coupling (tau-coupling) and a higher degree of movement circularity when compared to performance measured after the exposure to dissonant sounds. We infer that the neural resonance representing consonant tones leads to finer perception/action coupling which in turn may help explain the prevailing preference for these types of tones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its importance in social interactions, laughter remains little studied in affective computing. Intelligent virtual agents are often blind to users’ laughter and unable to produce convincing laughter themselves. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received less attention. The aim of this study is threefold. First, to probe human laughter perception by analyzing patterns of categorisations of natural laughter animated on a minimal avatar. Results reveal that a low dimensional space can describe perception of laughter “types”. Second, to investigate observers’ perception of laughter (hilarious, social, awkward, fake, and non-laughter) based on animated avatars generated from natural and acted motion-capture data. Significant differences in torso and limb movements are found between animations perceived as laughter and those perceived as non-laughter. Hilarious laughter also differs from social laughter. Different body movement features were indicative of laughter in sitting and standing avatar postures. Third, to investigate automatic recognition of laughter to the same level of certainty as observers’ perceptions. Results show recognition rates of the Random Forest model approach human rating levels. Classification comparisons and feature importance analyses indicate an improvement in recognition of social laughter when localized features and nonlinear models are used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the possibilities of spatial hearing in relation to sound perception, and presents three acousmatic compositions based on a musical aesthetic that emphasizes this relation in musical discourse. The first important characteristic of these compositions is the exclusive use of sine waves and other time invariant sound signals. Even though these types of sound signals present no variations in time, it is possible to perceive pitch, loudness, and tone color variations as soon as they move in space due to acoustic processes involved in spatial hearing. To emphasize the perception of such variations, this thesis proposes to divide a tone in multiple sound units and spread them in space using several loudspeakers arranged around the listener. In addition to the perception of sound attribute variations, it is also possible to create rhythm and texture variations that depend on how sound units are arranged in space. This strategy permits to overcome the so called "sound surrogacy" implicit in acousmatic music, as it is possible to establish cause-effect relations between sound movement and the perception of sound attribute, rhythm, and texture variations. Another important consequence of using sound fragmentation together with sound spatialization is the possibility to produce diffuse sound fields independently from the levels of reverberation of the room, and to create sound spaces with a certain spatial depth without using any kind of artificial sound delay or reverberation.