1000 resultados para 111399 Optometry and Ophthalmology not elsewhere classified
Resumo:
It is possible to estimate the depth of focus (DOF) of the eye directly from wavefront measurements using various retinal image quality metrics (IQMs). In such methods, DOF is defined as the range of defocus error that degrades the retinal image quality calculated from IQMs to a certain level of the maximum value. Although different retinal image quality metrics are used, currently there have been two arbitrary threshold levels adopted, 50% and 80%. There has been limited study of the relationship between these threshold levels and the actual measured DOF. We measured the subjective DOF in a group of 17 normal subjects, and used through-focus augmented visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM. For each subject, a VSOTF threshold level was derived that would match the subjectively measured DOF. Significant correlation was found between the subject’s estimated threshold level and the HOA RMS (Pearson’s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual’s DOF from a single measurement of their wavefront aberrations.
Resumo:
Abstract—The role of cardiopulmonary signals in the dynamics of wavefront aberrations in the eye has been examined. Synchronous measurement of the eye’s wavefront aberrations, cardiac function, blood pulse, and respiration signals were taken for a group of young, healthy subjects. Two focusing stimuli, three breathing patterns, as well as natural and cycloplegic eye conditions were examined. A set of tools, including time–frequency coherence and its metrics, has been proposed to acquire a detailed picture of the interactions of the cardiopulmonary system with the eye’s wavefront aberrations. The results showed that the coherence of the blood pulse and its harmonics with the eye’s aberrations was, on average, weak (0.4 ± 0.15), while the coherence of the respiration signal with eye’s aberrations was, on average, moderate (0.53 ± 0.14). It was also revealed that there were significant intervals during which high coherence occurred. On average, the coherence was high (>0.75) during 16% of the recorded time, for the blood pulse, and 34% of the time for the respiration signal. A statistically significant decrease in average coherence was noted for the eye’s aberrations with respiration in the case of fast controlled breathing (0.5 Hz). The coherence between the blood pulse and the defocus was significantly larger for the far target than for the near target condition. After cycloplegia, the coherence of defocus with the blood pulse significantly decreased, while this was not the case for the other aberrations. There was also a noticeable, but not statistically significant, increase in the coherence of the comatic term and respiration in that case. By using nonstationary measures of signal coherence, a more detailed picture of interactions between the cardiopulmonary signals and eye’s wavefront aberrations has emerged.
Resumo:
Purpose. To investigate the effect of various presbyopic vision corrections on nighttime driving performance on a closed-road driving circuit. Methods. Participants were 11 presbyopes (mean age, 57.3 ± 5.8 years), with a mean best sphere distance refractive error of R+0.23±1.53 DS and L+0.20±1.50 DS, whose only experience of wearing presbyopic vision correction was reading spectacles. The study involved a repeated-measures design by which a participant's nighttime driving performance was assessed on a closed-road circuit while wearing each of four power-matched vision corrections. These included single-vision distance lenses (SV), progressive-addition spectacle lenses (PAL), monovision contact lenses (MV), and multifocal contact lenses (MTF CL) worn in a randomized order. Measures included low-contrast road hazard detection and avoidance, road sign and near target recognition, lane-keeping, driving time, and legibility distance for street signs. Eye movement data (fixation duration and number of fixations) were also recorded. Results. Street sign legibility distances were shorter when wearing MV and MTF CL than SV and PAL (P < 0.001), and participants drove more slowly with MTF CL than with PALs (P = 0.048). Wearing SV resulted in more errors (P < 0.001) and in more (P = 0.002) and longer (P < 0.001) fixations when responding to near targets. Fixation duration was also longer when viewing distant signs with MTF CL than with PAL (P = 0.031). Conclusions. Presbyopic vision corrections worn by naive, unadapted wearers affected nighttime driving. Overall, spectacle corrections (PAL and SV) performed well for distance driving tasks, but SV negatively affected viewing near dashboard targets. MTF CL resulted in the shortest legibility distance for street signs and longer fixation times.
Resumo:
Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.
Resumo:
To evaluate the effect of soft contact lens type on the in vivo tear film surface quality (TFSQ) on daily disposable lenses and to establish whether two recently developed techniques for noninvasive measurement of TFSQ can distinguish between different contact lens types.
Resumo:
Purpose: Silicone hydrogel contact lenses (CLs) are becoming increasingly popular for daily wear (DW), extended wear (EW) and continuous wear (CW), due to their higher oxygen transmissibility compared to hydrogel CLs. The aim of this study was to investigate the clinical and subjective performance of asmofilcon A (Menicon Co., Ltd), a new surface treated silicone hydrogel CL, during 6-night EW over 6 months (M). Methods: A prospective, randomised, single-masked, monadic study was conducted. N=60 experienced DW soft CL wearers were randomly assigned to wear either asmofilcon A (test: Dk=129, water content (WC)=40%, Nanogloss surface treatment) or senofilcon A (control: Dk=103, WC=38%, PVP internal wetting agent, Vistakon, Johnson & Johnson Vision Care) CLs bilaterally for 6 M on an EW basis. A PHMB-preserved solution (Menicon Co., Ltd) was dispensed for CL care. Evaluations were conducted at CL delivery and after 1 week (W), 4 W, 3 M and 6 M of EW. At each visit, a range of objective and subjective clinical performance measures were assessed. Results: N=50 subjects (83%) successfully completed the study, with the majority of discontinuations due to loss to follow-up (n=3) or moving away/travel (n=5). N=2 subjects experienced adverse events; n=1 unilateral red eye with asmofilcon A and n=1 asymptomatic infiltrate with senofilcon A. There were no significant differences in high or low contrast distance visual acuity (HCDVA or LCDVA) between asmofilcon A and senofilcon A; however, LCDVA decreased significantly over time with both CL types (p<0.05). The two CL types did not vary significantly with respect to any of the objective and subjective measures assessed (p>0.05); CL fitting characteristics and CL surface measurements were very similar and mean bulbar and limbal redness measures were always less than grade 1.0. Superior palpebral conjunctival injection showed a statistically, but not clinically, significant increase over time with both CL types (p<0.05). Corneal staining did not vary significantly between asmofilcon A and senofilcon A (p>0.05), with low median gradings of less than 0.5 observed for all areas assessed. There were no solution-related staining reactions observed with either CL type. The asmofilcon A and senofilcon A CLs were both rated highly with respect to overall comfort, with medians of 14 or 15 hours of comfortable lens wearing time per day reported at each of the study visits (p>0.05). Conclusions: Over 6 months of EW, the asmofilcon A and senofilcon A CLs performed in a similar manner with respect to visual acuity, ocular health and CL performance measures. Some changes over time were observed with both CL types, including reduced LCDVA and increased superior palpebral injection, which warrant further investigation in longer-term EW studies. Asmofilcon A appeared to be equivalent in performance to senofilcon A.
Resumo:
Purpose. To evaluate the use of optical coherence tomography (OCT) to assess the effect of different soft contact lenses on corneoscleral morphology. Methods. Ten subjects had anterior segment OCT B-scans taken in the morning and again after six hours of soft contact lens wear. For each subject, three different contact lenses were used in the right eye on non-consecutive days, including a hydrogel sphere, a silicone hydrogel sphere and a silicone hydrogel toric. After image registration and layer segmentation, analyses were performed of the first hyper-reflective layer (HRL), the epithelial basement membrane (EBL) and the epithelial thickness (HRL to EBL). A root mean square difference (RMSD) of the layer profiles and the thickness change between the morning and afternoon measurements, was used to assess the effect of the contact lens on the corneoscleral morphology. Results. The soft contact lenses had a statistically significant effect on the morphology of the anterior segment layers (p <0.001). The average amounts of change for the three lenses (average RMSD values) for the corneal region were lower (3.93±1.95 µm for the HRL and 4.02±2.14 µm for the EBL) than those measured in the limbal/scleral region (11.24±6.21 µm for the HRL and 12.61±6.42 µm for the EBL). Similarly, averaged across the three lenses, the RMSD in epithelial thickness was lower in the cornea (2.84±0.84 µm) than the limbal/scleral (5.47±1.71 µm) region. Post-hoc analysis showed that ocular surface changes were significantly smaller with the silicone hydrogel sphere lens than both the silicone hydrogel toric (p<0.005) and hydrogel sphere (p<0.02) for the combined HRL and EBL data. Conclusions. In this preliminary study, we have shown that soft contact lenses can produce small but significant changes in the morphology of the limbal/scleral region and that OCT technology is useful in assessing these changes. The clinical significance of these changes is yet to be determined.
Resumo:
Purpose: The aim of this cross-over study was to investigate the changes in corneal thickness, anterior and posterior corneal topography, corneal refractive power and ocular wavefront aberrations, following the short term use of rigid contact lenses. Method: Fourteen participants wore 4 different types of contact lenses (RGP lenses of 9.5 mm and 10.5 mm diameter, and for comparison a PMMA lens of 9.5 mm diameter and a soft silicone hydrogel lens) on 4 different days for a period of 8 h on each day. Measures were collected before and after contact lens wear and additionally on a baseline day. Results: Anterior corneal curvature generally showed a flattening with both of the RGP lenses and a steepening with the PMMA lens. A significant negative correlation was found between the change in corneal swelling and central and peripheral posterior corneal curvature (all p ≤ 0.001). RGP contact lenses caused a significant decrease in corneal refractive power (hyperopic shift) of approximately 0.5 D. The PMMA contact lenses caused the greatest corneal swelling in both the central (27.92 ± 15.49 μm, p < 0.001) and peripheral (17.78 ± 12.11 μm, p = 0.001) corneal regions, a significant flattening of the posterior cornea and an increase in ocular aberrations (all p ≤ 0.05). Conclusion: The corneal swelling associated with RGP lenses was relatively minor, but there was slight central corneal flattening and a clinically significant hyperopic change in corneal refractive power after the first day of lens wear. The PMMA contact lenses resulted in significant corneal swelling and reduced optical performance of the cornea.
Resumo:
Purpose: The cornea has an important role in vision, is highly innervated and many neurotransmitter receptors are present, e.g., muscarine, melatonin, and dopamine receptors. γ-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and central nervous system, but it is unknown whether GABA receptors are present in cornea. The aim of this study was to determine if GABA receptors are located in chick cornea. Methods: Corneal tissues were collected from 25, 12-day-old chicks. Real time PCR, western blot, and immunohistochemistry were used to determine whether alpha1 GABAA, GABAB, and rho1 GABAC receptors were expressed and located in chick cornea. Results: Corneal tissue was positive for alpha1 GABAA and rho1 GABAC receptor mRNA (PCR) and protein (western blot) expression but was negative for GABAB receptor mRNA and protein. Alpha1 GABAA and rho1 GABAC receptor protein labeling was observed in the corneal epithelium using immunohistochemistry. Conclusions: These investigations clearly show that chick cornea possesses alpha1 GABAA, and rho1 GABAC receptors, but not GABAB receptors. The purpose of the alpha1 GABAA and rho1 GABAC receptors in cornea is a fascinating unexplored question.
Resumo:
Purpose: To examine the symmetry of corneal changes following near work in the fellow eyes of non-amblyopic myopic anisometropes. Methods: Thirty-four non-amblyopic, myopic anisometropes (minimum 1 D spherical equivalent anisometropia) had corneal topography measured before and after a controlled near work task. Subjects were positioned in a headrest to minimise head movements and read continuous text on a computer monitor for 10 minutes at an angle of 25 degrees downward gaze and an accommodation demand of 2.5 D. Measures of the morphology of the palpebral aperture during primary and downward gaze were also obtained. Results: The more and less myopic eyes exhibited a high degree of interocular symmetry for measures of palpebral aperture morphology during both primary and downward gaze. Following the near work task, fellow eyes also displayed a symmetrical change in superior corneal topography (hyperopic defocus) which correlated with the position of the upper eyelid during downward gaze. Greater changes in the spherical corneal power vector (M) following reading were associated with narrower palpebral aperture during downward gaze (p = 0.07 for more myopic and p = 0.03 for less myopic eyes). A significantly greater change in J0 (an increase in against the rule astigmatism) was observed in the more myopic eyes (-0.04 ± 0.04 D) compared to the less myopic eyes (-0.02 ± 0.06 D) over a 6 mm corneal diameter (p = 0.01). Conclusions: Changes in corneal topography following near work are highly symmetrical between the fellow eyes of myopic anisometropes due to the interocular symmetry of the palpebral aperture. However, the more myopic eye exhibits changes in corneal astigmatism of greater magnitude compared to the less myopic eye.
Resumo:
Purpose To examine choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. Methods ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged between 4-12 years, with spherical equivalent refractive errors between +1.25 and -0.50 DS. A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorio-scleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers manually segmented the OCT images to determine ChT at foveal centre, and averaged across a series of perifoveal zones over the central 5 mm. Results The average subfoveal ChT was 330 ± 65 µm (range 189-538 µm), and was significantly influenced by age (p=0.04). The ChT of the 4 to 6 year old age group (312 ± 62 µm) was significantly thinner compared to the 7 to 9 year olds (337 ± 65 µm, p<0.05) and bordered on significance compared to the 10 to 12 year olds (341 ± 61 µm, p=0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length and anterior chamber depth were significantly associated with subfoveal ChT (p<0.001). Conclusions ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.
Resumo:
Collagen crosslinking (CXL) has shown promising results in the prevention of the progression of keratoconus and corneal ectasia. However, techniques for in vivo and in situ assessment of the treatment are limited. In this study, ex vivo porcine eyes were treated with a chemical CXL agent (glutaraldehyde), during which polarization sensitive optical coherence tomography (PS-OCT) recordings were acquired simultaneously to assess the sensitivity of the technique to assess changes in the cornea. The results obtained in this study suggest that PS-OCT may be a suitable technique to measure CXL changes in situ and to assess the local changes in the treated region of the cornea.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
Purpose Videokeratoscopy images can be used for the non-invasive assessment of the tear film. In this work the applicability of an image processing technique, textural-analysis, for the assessment of the tear film in Placido disc images has been investigated. Methods In the presence of tear film thinning/break-up, the reflected pattern from the videokeratoscope is disturbed in the region of tear film disruption. Thus, the Placido pattern carries information about the stability of the underlying tear film. By characterizing the pattern regularity, the tear film quality can be inferred. In this paper, a textural features approach is used to process the Placido images. This method provides a set of texture features from which an estimate of the tear film quality can be obtained. The method is tested for the detection of dry eye in a retrospective dataset from 34 subjects (22-normal and 12-dry eye), with measurements taken under suppressed blinking conditions. Results To assess the capability of each texture-feature to discriminate dry eye from normal subjects, the receiver operating curve (ROC) was calculated and the area under the curve (AUC), specificity and sensitivity extracted. For the different features examined, the AUC value ranged from 0.77 to 0.82, while the sensitivity typically showed values above 0.9 and the specificity showed values around 0.6. Overall, the estimated ROCs indicate that the proposed technique provides good discrimination performance. Conclusions Texture analysis of videokeratoscopy images is applicable to study tear film anomalies in dry eye subjects. The proposed technique appears to have demonstrated its clinical relevance and utility.
Resumo:
Antimetropia, a sub-classification of anisometropia, is a rare refractive condition in which one eye is myopic and the fellow eye is hyperopic. This case report describes the ocular characteristics and atypical refractive progression in an adult male with a moderate degree of non-amblyopic antimetropia over a 20-year period. The potential mechanisms underlying unilateral axial elongation, anisometropia and myopia progression in adulthood are discussed.