969 resultados para 100 pixels surface


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main aim of this work is to investigate the 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im]+[BF4]-) ionic liquid (IL) adsorption on the gamma-Al2O3 (100) by density functional theory calculations to try to rationalize the adsorption as an electrostatic phenomenon. Optimized geometries and interaction energies of IL one-monolayer on the gamma-Al2O3 were obtained on high surface coverage (one cationanion pair per 94.96 nm2). A study of dispersion force was made to estimate its contribution to the adsorption. Overall, the process is ruled by electrostatic interaction between ions and surface. Adsorption of the anion [BF4]- and cation [C4C1Im]+ was also studied by Bader charge analysis and charge density difference for supported and unsupported situations. It is suggested that the IL ions have their charges maintained with significant anion cloud polarization inward to the acid aluminum sites. (c) 2012 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Si(100) and Ge(100) substrates essential for subsequent III-V integration were studied in the hydrogen ambient of a metalorganic vapor phase epitaxy reactor. Reflectance anisotropy spectroscopy (RAS) enabled us to distinguish characteristic configurations of vicinal Si(100) in situ: covered with oxide, cleaned by thermal removing in H2, and terminated with monohydrides when cooling in H2 ambient. RAS measurements during cooling in H2 ambient after the oxide removal process revealed a transition from the clean to the monohydride terminated Si(100) surface dependent on process temperature. For vicinal Ge(100) we observed a characteristic RA spectrum after annealing and cooling in H2 ambient. According to results from X-ray photo electron spectroscopy and Fourier-transform infrared spectroscopy the spectrum corresponds to the monohydride terminated Ge(100) surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scanning tunneling microscopy, temperature-programmed reaction, near-edge X-ray absorption fine structure spectroscopy, and density functional theory calculations were used to study the adsorption and reactions of phenylacetylene and chlorobenzene on Ag(100). In the absence of solvent molecules and additives, these molecules underwent homocoupling and Sonogashira cross-coupling in an unambiguously heterogeneous mode. Of particular interest is the use of silver, previously unexplored, and chlorobenzene—normally regarded as relatively inert in such reactions. Both molecules adopt an essentially flat-lying conformation for which the observed and calculated adsorption energies are in reasonable agreement. Their magnitudes indicate that in both cases adsorption is predominantly due to dispersion forces for which interaction nevertheless leads to chemical activation and reaction. Both adsorbates exhibited pronounced island formation, thought to limit chemical activity under the conditions used and posited to occur at island boundaries, as was indeed observed in the case of phenylacetylene. The implications of these findings for the development of practical catalytic systems are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(lOO)-Ag interface, the CdTe(lOO)-Sb system, and the InSb(lOO)-Sn interface. High-energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2xl) structure was observed for the CdTe(lOO) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(l00)-(2xl) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(lOO)-(2xl) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(lOO) surface differed from the CdTe(lOO) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(lOO) surface, including a c(8x2), a c(4x4), an asymmetric (lx3), a symmetric (lx3), and a (lxl). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1-3/4 monolayers of Sb atoms. The c(8x2) surface is found to be terminated with 3/4 monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(lOO) structures. The room temperature growth characteristics of grey Sn on the lnSb(lOO)-c(4x4) and InSb(l00)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum for this semiconductor heterojunction system is measured to be 0.40 eV, independent of the starting surface structure and stoichiometry. This result is reconciled with theoretical predictions for heterostructure behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.