992 resultados para 090107 Hypersonic Propulsion and Hypersonic Aerodynamics
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved
Resumo:
[EN]In previous works, many authors have widely used mass consistent models for wind field simulation by the finite element method. On one hand, we have developed a 3-D mass consistent model by using tetrahedral meshes which are simultaneously adapted to complex orography and to terrain roughness length. In addition, we have included a local refinement strategy around several measurement or control points, significant contours, as for example shorelines, or numerical solution singularities. On the other hand, we have developed a 2.5-D model for simulating the wind velocity in a 3-D domain in terms of the terrain elevation, the surface temperature and the meteorological wind, which is consider as an averaged wind on vertical boundaries...
Resumo:
The ROV operations had three objectives: (1) to check, whether the "Cherokee" system is suited for advanced benthological work in the high latitude Antarctic shelf areas; (2) to support the disturbance experiment, providing immediate visual Information; (3) to continue ecological work that started in 1989 at the hilltop situated at the northern margin of the Norsel Bank off the 4-Seasons Inlet (Weddell Sea). The "Cherokee" is was equipped with 3 video cameras, 2 of which support the operation. A high resolution Tritech Typhoon camera is used for scientific observations to be recorded. In addition, the ROV has a manipulator, a still camera, lights and strobe, compass, 2 lasers, a Posidonia transponder and an obstacle avoidance Sonar. The size of the vehicle is 160 X 90 X 90cm. In the present configuration without TMS (tether management system) the deployment has to start with paying out the full cable length, lay it in loops on deck and connect the glass fibres at the tether's spool winch. After a final technical check the vehicle is deployed into the water, actively driven perpendicular to the ship's axis and floatings are fixed to the tether. At a cable length of approx. 50 m, the tether is tightened to the depressor by several cable ties and both components are lowered towards the sea floor, the vehicle by the thruster's propulsion and the depressor by the ship's winch. At 5 m intervals the tether has to be tied to the single conductor cable. In good weather conditions the instruments supporting the navigation of the ROV, especially the Posidonia system, allow an operation mode to follow the ship's course if the ship's speed is slow. Together with the lasers which act as a scale in the images they also allow a reproducible scientific analysis since the transect can be plotted in a GIS system. Consequently, the area observed can be easily calculated. An operation as a predominantly drifting system, especially in areas with bottom near currents, is also possible, however, the connection of the tether at the rear of the vehicle is unsuitable for such conditions. The recovery of the system corresponds to that of the deployment. Most important is to reach the surface of the sea at a safe distance perpendicular to the ship's axis in order not to interfere with the ship's propellers. During this phase the Posidonia transponder system is of high relevance although it has to be switched off at a water depth of approx. 40 m. The minimum personal needed is 4 persons to handle the tether on deck, one person to operate the ship's winch, one pilot and one additional technician for the ROV's operation itself, one scientist, and one person on the ship's bridge in addition to one on deck for whale watching when the Posidonia system is in use. The time for the deployment of the ROV until it reaches the sea floor depends on the water depth and consequently on the length of the cable to be paid out beforehand and to be tightened to the single conductor cable. Deployment and recovery at intermediate water depths can last up to 2 hours each. A reasonable time for benthological observations close to the sea floor is 1 to 3 hours but can be extended if scientifically justified. Preliminary results: after a first test station, the ROV was deployed 3 times for observations related to the disturbance experiment. A first attempt to Cross the hilltop at the northern margin of the Norsel Bank close to the 4- Seasons Inlet was successful only for the first hundreds of metres transect length. The benthic community was dominated in biomass by the demosponge Cinachyra barbata. Due to the strong current of approx. 1 nm/h, the design of the system, and an expected more difficult current regime between grounded icebergs and the top of the hilltop the operation was stopped before the hilltop was reached. In a second attempt the hilltop was successfully crossed because the current and wind situation was much more suitable. In contrast to earlier expeditions with the "sprint" ROV it was the first time that both slopes, the smoother in the northeast and the steeper in the southwest were continuously observed during one cast. A coarse classification of the hilltop fauna shows patches dominated by single taxa: cnidarians, hydrozoans, holothurians, sea urchins and stalked sponges. Approximately 20 % of the north-eastern slope was devastated by grounding icebergs. Here the sediments consisted of large boulders, gravel or blocks of finer sediment looking like an irregularly ploughed field. On the Norsel Bank the Cinachyra concentrations were locally associated with high abundances of sea anemones. Total observation time amounted to 11.5 hours corresponding to almost 6-9 km transect length.
Resumo:
Tethered spacecraft missions to the Jovian system suit the use of electrodynamic tethers because: 1) magnetic stresses are 100 times greater than at the Earth; 2) the stationary orbit is one-third the relative distance for Earth; and 3) moon Io is a nearby giant plasma source. The (bare) tether is a reinforced aluminum foil with tens of kilometer length L and a fraction of millimeter thickness h, which collects electrons as an efficient Langmuir probe and can tap Jupiter’s rotational energy for both propulsion and power. In this paper, the critical capture operation is explicitly formulated in terms of orbit geometry and established magnetic and thermal plasma models. The design parameters L and h and capture perijove radius rp face opposite criteria independent of tape width. Efficient capture requires a low rp and a high L 3/2/h ratio. However, combined bounds on tether bowing and tether tensile stress, arising from a spin made necessary by the low Jovian gravity gradient, require a high rp and a low L 5/2/h ratio. Bounds on tether temperature again require a high rp and a low L 3/8/(tether emissivity)1/4 ratio. Optimal design values are discussed.
Resumo:
The product of the tether-to-satellite mass ratio and the probability of tether cuts by small debris must be small to make electrodynamic bare tethers a competitive and useful de-orbiting technology. In the case of a circular orbit and assuming a model for the debris population, the product can be written as a function that just depends on the initial orbit parameters (altitude and inclination) and the tether geometry. This formula, which does not contain the time explicitly and ignores the details of the tether dynamics during the de-orbiting, is used to find design rules for the tape dimensions and the orbit parameter ranges where tethers dominate other de-orbiting technologies like rockets, electrical propulsion, and sails.
Resumo:
An electrodynamic tether can propel a spacecraft through a planetary magnetized plasma without using propellant. In the classical embodiment of an electrodynamic tether, the ambient magnetic fleld exerts a Lorentz force on the current along the tether, the ambient plasma providing circuit closure for the current A suggested propulsion scheme would hypothetically eliminate tether performance dependence on the plasma density by using a full wire loop to close the current circuit, and a superconductor to shield a loop segment from the external uniform magnetic fleld and cancel the Lorentz force on that segment. Here, we use basic electromagnetic laws to explain how such a scheme cannot produce a net force. Because there is no net current in the superconducting shield, the circulation of the magnetic field along a closed line outside the full cross section, in its plane, is just due to the current flowing in the loop segment. The presence of the superconducting shield simply moves the Lorentz force from the shielded loop segment to the shield itself and, as a result, the total magnetic force, acting on full loop plus shield, remains zero.
Resumo:
Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.
Resumo:
When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.
Resumo:
This paper describes the development of an analytical model used to simulate the fatigue behaviour of roof cladding during the passage of a tropical cyclone. The model incorporated into a computer program uses wind pressure data from wind tunnel tests in combination with time history information on wind speed and direction during a tropical cyclone, and experimental fatigue characteristics data of roof claddings. The wind pressure data is analysed using a rainflow form of analysis, and a fatigue damage index calculated using a modified form of Miner's rule. Some of the results obtained to date and their significance in relation to the review of current fatigue tests are presented. The model appears to be reasonable for comparative estimation of fatigue life, but an improvement of Miner's rule is required for the prediction of actual fatigue life.
Resumo:
A, dry, non-hydrostatic sub-cloud model is used to simulate an isolated stationary downburst wind event to study the influence topographic features have on the near-ground wind structure of these storms. It was generally found that storm maximum wind speeds could be increased by up to 30% because of the presence of a topographic feature at the location of maximum wind speeds. Comparing predicted velocity profile amplification with that of a steady flow impinging jet, similar results were found despite the simplifications made in the impinging jet model. Comparison of these amplification profiles with those found in the simulated boundary layer winds reveal reductions of up to 30% in the downburst cases. Downburst and boundary layer amplification profiles were shown to become more similar as the topographic feature height was reduced with respect to the outflow depth.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.
Resumo:
Abstract is not available.
Resumo:
Theoretical studies have been carried out to examine internal flow choking in the inert simulators of a dual-thrust motor. Using a two-dimensional k-omega turbulence model, detailed parametric studies have been carried out to examine aerodynamic choking and the existence of a fluid throat at the transition region during the startup transient of dual-thrust motors. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second-order-implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-averaged, Navier-Stokes equations is employed. It was observed that, at the subsonic inflow conditions, there is a possibility of the occurrence of internal flow choking in dual-thrust motors due to the formation of a fluid throat at the beginning of the transition region induced by area blockage caused by boundary-layer-displacement thickness. It has been observed that a 55% increase in the upstream port area of the dual-thrust motor contributes to a 25% reduction in blockage factor at the transition region, which could negate the internal How choking and supplement with an early choking of the dual-thrust motor nozzle. If the height of the upstream port relative to the motor length is too small, the developing boundary layers from either side of the port can interact, leading to a choked,flow. On the other hand, if the developing boundary layers are far enough apart, then choking does not occur. The blockage factor is greater in magnitude for the choked case than for the unchoked case. More tangible explanations are presented in this paper for the boundary-layer blockage and the internal flow choking in dual-thrust motors, which hitherto has been unexplored.