852 resultados para 080109 Pattern Recognition and Data Mining
Resumo:
Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.
Resumo:
This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.
Resumo:
The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.
Resumo:
This study evaluated the expression of pattern recognition receptors (PRRs) and activation factors associated with salivary and blood neutrophils from different aged patients diagnosed with Candida-related denture stomatitis (DS). Expression of neutrophil PRRs was determined by flow cytometry and immunofluorescence, and the levels of selected cytokines that influence immune activation were determined by ELISA. The salivary (but not the serum derived) neutrophils of individuals with DS were found to have an increased expression of CD69 regardless of the age of the patient compared to patients without DS. However, these salivary neutrophils had a lower expression of CD66b and CD64. Expression of TLR2 was lower on the salivary-and serum-derived neutrophils from elderly individuals compared to the neutrophils of younger subjects, regardless of whether the individual had DS. Salivary interleukin (IL)-4 was elevated in both of the elderly subject groups (with or without DS). Only elderly DS patients were observed to have increased serum IL-4 levels and reduced salivary IL-12 levels. Younger DS patients showed an increase in salivary IL-10 levels, and both the saliva and the serum levels of IFN-gamma were increased in all of the younger subjects. Our data demonstrated that changes in both the oral immune cells and the protein components could be associated with DS. Furthermore, changes in the blood-derived factors were more associated with age than DS status. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
One of the problems in the analysis of nucleus-nucleus collisions is to get information on the value of the impact parameter b. This work consists in the application of pattern recognition techniques aimed at associating values of b to groups of events. To this end, a support vec- tor machine (SVM) classifier is adopted to analyze multifragmentation reactions. This method allows to backtracing the values of b through a particular multidimensional analysis. The SVM classification con- sists of two main phase. In the first one, known as training phase, the classifier learns to discriminate the events that are generated by two different model:Classical Molecular Dynamics (CMD) and Heavy- Ion Phase-Space Exploration (HIPSE) for the reaction: 58Ni +48 Ca at 25 AMeV. To check the classification of events in the second one, known as test phase, what has been learned is tested on new events generated by the same models. These new results have been com- pared to the ones obtained through others techniques of backtracing the impact parameter. Our tests show that, following this approach, the central collisions and peripheral collisions, for the CMD events, are always better classified with respect to the classification by the others techniques of backtracing. We have finally performed the SVM classification on the experimental data measured by NUCL-EX col- laboration with CHIMERA apparatus for the previous reaction.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Objectives: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. Methods: We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. Results: The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). Conclusions: These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
Resumo:
Close similarities have been found between the otoliths of sea-caught and laboratory-reared larvae of the common sole Solea solea (L.), given appropriate temperatures and nourishment of the latter. But from hatching to mouth formation. and during metamorphosis, sole otoliths have proven difficult to read because the increments may be less regular and low contrast. In this study, the growth increments in otoliths of larvae reared at 12 degrees C were counted by light microscopy to test the hypothesis of daily deposition, with some results verified using scanning electron microscopy (SEM), and by image analysis in order to compare the reliability of the 2 methods in age estimation. Age was first estimated (in days posthatch) from light micrographs of whole mounted otoliths. Counts were initiated from the increment formed at the time of month opening (Day 4). The average incremental deposition rate was consistent with the daily hypothesis. However, the light-micrograph readings tended to underestimate the mean ages of the larvae. Errors were probably associated with the low-contrast increments: those deposited after the mouth formation during the transition to first feeding, and those deposited from the onset of eye migration (about 20 d posthatch) during metamorphosis. SEM failed to resolve these low-contrast areas accurately because of poor etching. A method using image analysis was applied to a subsample of micrograph-counted otoliths. The image analysis was supported by an algorithm of pattern recognition (Growth Demodulation Algorithm, GDA). On each otolith, the GDA method integrated the growth pattern of these larval otoliths to averaged data from different radial profiles, in order to demodulate the exponential trend of the signal before spectral analysis (Fast Fourier Transformation, FFT). This second method both allowed more precise designation of increments, particularly for low-contrast areas, and more accurate readings but increased error in mean age estimation. The variability is probably due to a still rough perception of otolith increments by the GDA method, counting being achieved through a theoretical exponential pattern and mean estimates being given by FFT. Although this error variability was greater than expected, the method provides for improvement in both speed and accuracy in otolith readings.
Resumo:
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.