178 resultados para -Proteobacteria
Resumo:
A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
An amoeba isolated from an aquatic biotope, identified morphologically as Saccamoeba limax, was found harbouring mutualistic rod-shaped gram-negative bacteria. During their cultivation on agar plates, a coinfection also by lysis-inducing chlamydia-like organisms was found in some subpopulations of that amoeba. .Here we provide a molecular-based identification of both the amoeba host and the two bacterial endosymbionts. Analysis of the 18S rRNA gene revealed that this strain is the sister-group to Glaeseria, for which we proposed the name Saccamoeba lacustris. The rod-shaped endosymbiont was identified as a member of Variovorax paradoxus group (Comamonadaceae, Beta-Proteobacteria). No growth on bacteriological agars was recorded, hence this symbiont might be strictly intracellular. The chlamydia-like parasite was unable to infect Acanthamoeba and other amoebae in coculture, showing high host specificity. Phylogenetic analysis based on the 16S rDNA indicated that it is a new member of the family Parachlamydiaceae (order Chlamydiales), for which we proposed the name 'Candidatus Metachlamydia lacustris'.
Resumo:
A cultura da cana-de-açúcar é de extrema importância no cenário agrícola nacional. No entanto, pouco se sabe sobre a estruturação das comunidades microbianas associadas aos solos e às rizosferas de tais plantas. O objetivo deste trabalho foi avaliar a estrutura e diversidade das comunidades de bactérias associadas ao solo e à rizosfera de seis variedades de cana-de-açúcar cultivadas no Estado de São Paulo (Brasil). As análises foram realizadas com base em métodos independentes de cultivo, em que a técnica de PCR-DGGE revelou alterações na rizosfera para os grupos de bactérias totais e também para os grupos de Alphaproteobacteria e Betaproteobacteria. Após essa análise, quatro amostras (três de rizosfera e uma de solo) foram usadas para o sequenciamento da região V6 do gene 16S DNAr na plataforma Ion Torrent TM. Essa análise gerou um total de 95.812 sequências, dentro das quais houve a predominância das afiliadas aos filos Actinobacteria, Proteobacteria e Acidobateria . Os resultados revelaram que as comunidades bacterianas na rizosfera são distintas daquelas encontradas no solo. Foi possível ainda observar efeito diferencial de plantas das variedades. Alguns grupos bacterianos apresentaram menor frequência na rizosfera (Acidobacteria ), enquanto outros se mostraram fortemente estimulados pela presença das raízes, comumente para todas as variedades (Betaproteobacteria , Nitrospora e Chloroflexi ), ou em respostas variedade-específicas (Bacilli e Sphingobacteria ).
Resumo:
N(6)-methyl-adenines can serve as epigenetic signals for interactions between regulatory DNA sequences and regulatory proteins that control cellular functions, such as the initiation of chromosome replication or the expression of specific genes. Several of these genes encode master regulators of the bacterial cell cycle. DNA adenine methylation is mediated by Dam in gamma-proteobacteria and by CcrM in alpha-proteobacteria. A major difference between them is that CcrM is cell cycle regulated, while Dam is active throughout the cell cycle. In alpha-proteobacteria, GANTC sites can remain hemi-methylated for a significant period of the cell cycle, depending on their location on the chromosome. In gamma-proteobacteria, most GATC sites are only transiently hemi-methylated, except regulatory GATC sites that are protected from Dam methylation by specific DNA-binding proteins.
Resumo:
O objetivo deste trabalho foi realizar um levantamento da diversidade de microrganismos endofíticos, em plantas de mandioca (Manihot esculenta Crantz) coletadas de áreas comerciais, no Estado de São Paulo, e de etnovariedades dos estados do Amazonas e Bahia e, também, avaliar seu potencial para fixar N atmosférico e para produzir ácido indolacético. Nos três estados, foram identificadas 47 espécies de microrganismos pertencentes a 27 gêneros. Bacillus spp. foi o mais freqüente em todas as regiões. O maior número de gêneros foi encontrado em plantas provenientes do Estado do Amazonas, que apresenta a maior diversidade de microrganismos endofíticos. Amplificações por PCR do gene nifH foram avaliadas em espécies bacterianas pertencentes às gama-Proteobacteria. Isolados AIA positivos foram obtidos de material coletado em todos os estados, e foram representados por microrganismos pertencentes aos subgrupos gama-Proteobacteria, beta-Proteobacteria, Bacilli e Actinobacteria. A ocorrência de bactérias endofíticas em plantas de mandioca, com capacidade para fixar N atmosférico e produzir AIA in vitro, indica potencial para promover o crescimento da planta.
Resumo:
O objetivo deste trabalho foi avaliar o efeito do feijoeiro geneticamente modificado quanto à resistência ao Bean Golden Mosaic Vírus, BGMV (Olathe M1-4), sobre organismos não alvo. De um experimento implantado no campo, em delineamento inteiramente casualizado, com dois tratamentos (Olathe Pinto e evento elite Olathe M1-4), dois períodos amostrais (estádio V4 e R6) e dez repetições, obtiveram-se células bacterianas cultivadas e não cultivadas da rizosfera e do solo não rizosférico, para as quais se procedeu à extração de DNA total. A região V6-V8 do 16S rDNA foi amplificada para a comunidade bacteriana total, e também realizou-se amplificação com iniciadores específicos para o subgrupo alfa (α) do filo Proteobacteria a partir de células não cultivadas. Foram obtidos dendrogramas comparativos entre a variedade Olathe Pinto (convencional) e o evento elite Olathe M1-4 (geneticamente modificado) utilizando-se o coeficiente de Jaccard e o método UPGMA (Unweighted pair-group method with arithmetic mean). Os agrupamentos obtidos dos perfis de 16S rDNA PCR-DGGE indicam alterações na comunidade bacteriana da rizosfera em função da transformação das plantas são mais notáveis nos perfis obtidos para alfa-proteobacteria. A origem das amostras e o estágio de desenvolvimento das plantas afetam a comunidade bacteriana.
Resumo:
The bacterial microbiota from the whole gut of soldier and worker castes of the termite Reticulitermes grassei was isolated and studied. In addition, the 16S rDNA bacterial genes from gut DNA were PCR-amplified using Bacteria-selective primers, and the 16S rDNA amplicons subsequently cloned into Escherichia coli. Sequences of the cloned inserts were then used to determine closest relatives by comparison with published sequences and with sequences from our previous work. The clones were found to be affiliated with the phyla Spirochaetes, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Synergistetes, Verrucomicrobia, and candidate phyla Termite Group 1 (TG1) and Termite Group 2 (TG2). No significant differences were observed with respect to the relative bacterial abundances between soldier and worker phylotypes. The phylotypes obtained in this study were compared with reported sequences from other termites, especially those of phylotypes related to Spirochaetes, Wolbachia (an Alphaproteobacteria), Actinobacteria, and TG1. Many of the clone phylotypes detected in soldiers grouped with those of workers. Moreover, clones CRgS91 (soldiers) and CRgW68 (workers), both affiliated with"Endomicrobia", were the same phylotype. Soldiers and workers also seemed to have similar relative protist abundances. Heterotrophic, poly-β-hydroxyalkanoate-accumulating bacteria were isolated from the gut of soldiers and shown to be affiliated with Actinobacteria and Gammaproteobacteria. We noted that Wolbachia was detected in soldiers but not in workers. Overall, the maintenance by soldiers and workers of comparable axial and radial redox gradients in the gut is consistent with the similarities in the prokaryotes and protists comprising their microbiota.
Resumo:
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.
Resumo:
The objective of this work was to identify growth-promoting bacteria isolated from Agaricus blazei and to evaluate their effect on mushroom mycelial growth and productivity. A total of 56 A. blazei-associated bacterial isolates were obtained from casing soil and identified by 16S rRNA gene sequencing. Bacteria were evaluated as to phosphate-solubilization ability, nitrogen-fixation capability, and secretion of cellulase. Superior isolates were tested for their to effect on A. blazei productivity, micelial growth, and on the contents of the polysaccharide-protein complex and of N, P, K, Ca, and Mg. Bacterial isolates were identified as actinobacteria (60%), firmicutes (20%), and proteobacteria (20%). Among them, ten isolates had phosphate-solubilization ability, eight showed nitrogen-fixation capability, and 12 isolates promoted A. blazei mycelium growth. Bacterial inoculation reduces time till harvest in up to 26 days, increases fresh mushroom yield up to 215%, and increases total polysaccharide-protein complex content twofold when compared to the non-inoculated control. The actinobacteria group is the predominant A. blazei-associated phylum.
Resumo:
The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria.
Resumo:
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron–sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron–sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary cooccurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.
Resumo:
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.
Resumo:
Fish eggs are associated with microbes, whose roles range from mutualism to parasitism. Recent laboratory experiments have shown that the taxonomic composition of associated microbial communities on the egg influences embryonic development. Host genetics also plays an important role in determining the consequences for embryonic growth and survival in this interaction. Moreover, it has been found that the importance of host genetics increases during embryogenesis. These findings suggest that during embryogenesis, the host increasingly influences the composition of its associated microbial community. However, little is known about the composition of microbial communities associated with naturally spawned eggs in the wild. We sampled fertilized whitefish eggs (Coregonus spp.) of different developmental stages from six sub-Alpine lakes and used a universal primer pair and 454 pyrosequencing in order to describe the taxonomic composition of egg-associated bacterial communities. We found bacterial communities on early embryos to be very diverse and to resemble the bacterial composition of the surrounding water environment. The bacterial communities on late embryos were significantly less diverse than on early embryos and displayed a clear shift in taxonomic composition that corresponded poorly with the bacterial composition of the surrounding water environment. The main bacterial components on whitefish eggs in this study were Proteobacteria, Actinobacteria, and Firmicutes, while the five most common families were Leuconostocaceae, Streptococcaceae, Comamonadaceae, Oxalobacteraceae and Moraxellaceae. Their putative relationships with the host are discussed. We conclude that natural symbiotic bacterial communities become more specialized during embryogenesis because of specific interactions with their embryo host.
Resumo:
Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.