53 resultados para •Sawmill


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the industries of wood processing (sawmills), where timber is sawn in equipment such as band saws, circular saws, trowel, thicknessers, among others, that mechanically transform this resource and use of electric motors, which are not unusually poorly scaled working or overloaded, often a factor that is not found in these industries and has fundamental importance in the production process is energy efficiency that is achieved by both technological innovation and through all the practices and policies that aim to lower energy consumption, lowering energy costs and increasing the amount of energy offered no change in generation. For both during the design of an electrical installation, both overall and in various sectors of the installation, investigations are necessary, considerations and uses of variables and factors that put into practice the theme of energy efficiency. Therefore, in this paper, these factors were calculated and analyzed for a wood processing industry (sawmill) in the municipality of Taquarivaí - SP, namely: active power, power factor, demand factor and load factor. Where they were small in relation to the literature, these events that occur when devices are connected at the same time and due to the conditions of processing the wood, where the engines have large variations in electricity consumption during the unfolding of the same, due to efforts with the load and idle moments between each machining operation in the equipment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El costo del transporte de los productos forestales reviste gran importancia en la rentabilidad de la actividad, incidiendo directamente en el precio percibido por el productor. Ante esta situación sería de utilidad, para el productor y para el transportista, conocer cuál sería el recorrido óptimo desde el lugar de partida (ej. lote del productor) hasta el lugar de destino (ej. acopiador). En consecuencia, se propone comprobar la factibilidad de utilizar el entorno de los Sistemas de Información Geográfica (SIG) en la determinación, de manera rápida y con exactitud, del camino óptimo entre un lote forestal y el aserradero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research, the halved and tabled traditional timber scarf joint is analyzed. This joint consists in two end joint pieces usually subjected to tension. Initially, the study is discussed from an experimental point of view. In this way, 3 critical cross-sections are established (section of the notch, section of the horizontal plane and reduced section) and mechanical tests are performed to achieve the failure on each of critical sections by changing the geometry of the joint. The study is completed by developing a finite element model which allows verify experimental results and extend the analysis to other geometries. This model has to simulate the real behavior of the material which is being studied, so mechanical tests are performed to obtain the elastic constants and the coefficients of friction of the material. In the reduced section, an abrupt decrease of the effective cross-section takes place, and this effect is also experimentally analyzed. These tests indicate that a crack is initiated before the bending-tension failure occurs in the reduced section. The test material consists of wood of Pinus sylvestris L. coming from the “Valsaín´s Sawmill” (Segovia) with “premium quality” according to the nonstructural wood visual classification of sawmill. It is observed that initiation of a crack, in the mortise (bottom of reduced section), and shear stress concentration, at the initial part of the heel (beginning of horizontal plane), completely determine the mechanical behaviour of the joint, resulting in 3 failure modes: local compression failure in the section of the notch, shear failure in the horizontal plane, and failure of stresses concentration, mainly perpendicular to the grain tension, at the bottom of reduced section. The geometric optimization is obtained for halved and tabled traditional scarf joint, when the joint has made with similar properties of wood than tested specimens, for any height and width of the cross-section. It is considered the failure due to the initiation of a crack in reduced section, by applying a correction coefficient into the usual equation used to design the members subjected to both tension and bending. Therefore, it is possible to obtain, analytically, the design conditions to be met of the 3 critical cross-sections. According to the theoretical optimization, the tension strength of complete cross-section is reduced until 14%, when using this type of joint. The experimental optimization indicates even a greater reduction, until 6%. En el presente trabajo de investigación se analiza el comportamiento mecánico de las uniones tradicionales de empalme de llave, que consisten en dos piezas unidas por sus testas transmitiéndose entre ellas principalmente un esfuerzo de tracción. Inicialmente, el estudio se aborda desde un punto de vista experimental. De este modo, se establecen las 3 secciones críticas o de estudio (sección del encaje, sección rasante del cogote y sección reducida) y se realizan ensayos mecánicos, variando la geometría de la unión, para alcanzar la rotura en cada una de ellas. Se completa el estudio mediante la elaboración de un modelo por elementos finitos que permite verificar los resultados experimentales y ampliar el análisis a otras geometrías. Este modelo debe simular el comportamiento real del material objeto de estudio, por lo que se realizan ensayos para obtener las constantes elásticas y los coeficientes de rozamiento del mismo. También se analiza, experimentalmente, el efecto entalladura que reduce bruscamente la sección completa del tirante, estableciendo que el fallo por flexotracción en la sección reducida de la pieza, no llega a producirse por el inicio previo de una grieta. El material de ensayo consiste en madera de Pinus sylvestris L. (pino silvestre) procedente del Aserradero de Valsaín (Segovia) y de calidad “Extra” o “Primera” según la clasificación visual no estructural del aserradero. Se observa que el inicio de una grieta en la mortaja del rediente y la concentración de tensiones tangenciales en la parte inicial del cogote, determinan completamente el comportamiento mecánico de la unión, dando lugar a 3 modos distintos de rotura: fallo por compresión en la sección del encaje, fallo por cortante en la sección rasante y fallo por concentración de tensiones, principalmente tracciones perpendiculares, en el rebaje de la sección reducida. Se consigue optimizar geométricamente cualquier empalme de llave confeccionado con madera de características similares a la ensayada, para cualquier valor de la altura y de la anchura de la sección. Se considera el agotamiento en la sección reducida causado por el inicio de grieta, mediante la aplicación de un coeficiente corrector en la expresión habitual de agotamiento por flexotracción, en consecuencia, finalmente es posible obtener, de modo analítico, un valor del índice de agotamiento en cada una de las 3 secciones de estudio. La optimización teórica del empalme de llave indica que la capacidad resistente del tirante bruto se reduce al 14%, cuando se coloca este tipo de unión tradicional. Experimentalmente se obtiene, que, para la sección ensayada, la capacidad resistente del tirante bruto se reduce todavía más, llegando al 6%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.

As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.

To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.

To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.

Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.

The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.

Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring the extent to which a piece of structural timber has distorted at a macroscopic scale is fundamental to assessing its viability as a structural component. From the sawmill to the construction site, as structural timber dries, distortion can render it unsuitable for its intended purposes. This rejection of unusable timber is a considerable source of waste to the timber industry and the wider construction sector. As such, ensuring accurate measurement of distortion is a key step in addressing ineffciencies within timber processing. Currently, the FRITS frame method is the established approach used to gain an understanding of timber surface profile. The method, while reliable, is dependent upon relatively few measurements taken across a limited area of the overall surface, with a great deal of interpolation required. Further, the process is unavoidably slow and cumbersome, the immobile scanning equipment limiting where and when measurements can be taken and constricting the process as a whole. This thesis seeks to introduce LiDAR scanning as a new, alternative approach to distortion feature measurement. In its infancy as a measurement technique within timber research, the practicalities of using LiDAR scanning as a measurement method are herein demonstrated, exploiting many of the advantages the technology has over current approaches. LiDAR scanning creates a much more comprehensive image of a timber surface, generating input data multiple magnitudes larger than that of the FRITS frame. Set-up and scanning time for LiDAR is also much quicker and more flexible than existing methods. With LiDAR scanning the measurement process is freed from many of the constraints of the FRITS frame and can be done in almost any environment. For this thesis, surface scans were carried out on seven Sitka spruce samples of dimensions 48.5x102x3000mm using both the FRITS frame and LiDAR scanner. The samples used presented marked levels of distortion and were relatively free from knots. A computational measurement model was created to extract feature measurements from the raw LiDAR data, enabling an assessment of each piece of timber to be carried out in accordance with existing standards. Assessment of distortion features focused primarily on the measurement of twist due to its strong prevalence in spruce and the considerable concern it generates within the construction industry. Additional measurements of surface inclination and bow were also made with each method to further establish LiDAR's credentials as a viable alternative. Overall, feature measurements as generated by the new LiDAR method compared well with those of the established FRITS method. From these investigations recommendations were made to address inadequacies within existing measurement standards, namely their reliance on generalised and interpretative descriptions of distortion. The potential for further uses of LiDAR scanning within timber researches was also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.