957 resultados para "Dielectric,
Resumo:
Resistivity and dielectric constant are important parameters which influence the separation of particles in a drum-type electrostatic separator. The paper provides details of the measurement of the parameters and data on the magnitude of resistivity and dielectric constant of the minerals of beach sand.
Resumo:
Single crystals of K, Rb and Cs perchlorates have been grown by the counter diffusion of the respective ions and CIO4 through the gel medium. Studies on nucleation, growth kinetics, morphological aspects and purity are discussed in this paper. The dielectric constant, ~b, as well as loss measured along the longest axis, exhibits an anomaly at the transition temperature, Tt, in all the three crystals. It is found that the peak values of Tt are approximately 800, 100 and 53 in K, Rb and Cs perchlorates, respectively. The dielectric anomaly and the large value of c b in the cubic phase are discussed in terms of the degree of disorder of the CIO~ group and the possible contribution from defects.
Resumo:
The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
An exhaustive study of the radiation and gain characteristics of a truncated dielectric-coated conducting spherical antenna excited in the symmetric TM mode has been reported. The effect of the various structure parameters on the radiation and the gain characteristics for a few even and odd order TM., modes for different structures is shown. The theorctical radiation patterns and gain have been compared with experiment. It is found that there is good agreement between theory and experiment in the case of TM es and TM os,modes. A theoretical and experimental study of the radiation and gain characcteristics in the frequency range 8.0 to 12.0 GHz has been reported.
Resumo:
This paper describes the dielectric behavior of an insulator-conductor composite, namely, the wax-graphite composite. The variation of specific capacitance of these composites with parameters such as volume fraction and grain size of the conducting particles and temperature has been studied. These observed variations have been explained using the same model [C. Rajagopal and M. Satyam, J. Appl. Phys. 49, 5536 (1978)] which explains electrical conduction in composites. The specific capacitance of these materials appears to be governed by the contact capacitance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of specific capacitance with temperature is attributed to the change in contact area.
Resumo:
Dielectric constants and loss tangents of As-Se glasses have been measured between 300 K and the respective glass transition temperatures and between 1 kHz and 20 kHz. The variation of dielectric constants has been interpreted in terms of both heteropolarity of bonds and average bond energies employing a chemically ordered network model. Various contributions to total molar polarizations have been estimated. Rapid rise of loss tangent in the vicinity of glass transitions has been interpreted in terms of rapid increase; of d.c. conductivity.
Resumo:
A simple method for evaluating dielectric relaxation parameters ie given whioh can be used for analyeing the arelaxation times of a liquid into two absorptions.
Resumo:
A ratio transformer method suitable for the measurement of the dielectric constant of highly conducting liquids is described. The resistance between the two plates of the capacitor can be as low as 2 k Omega . In this method variations in this low resistance will not give any error in capacitance measurement. One of the features of this method is the simplicity in balancing the resistance, using a LDR (light dependent resistor), without influencing the independent capacitance measurement. The ratio transformer enables the ground capacitances to be eliminated. The change in leakage inductance of the ratio transformer while changing the ratios is also taken into account. The capacitance of a dielectric cell of the order of 50 pF can be measured from 1000 Hz to 100 kHz with a resolution of 0.06 pF. The electrode polarisation problem is also discussed.
Resumo:
Dielectric studies of the glassy crystalline states of cyclohexanol, cyclohexanone, and camphor obtained by upercooling the plastic crystalline phase demonstrate the presence of characteristic a- and p-relaxations. The parameters of the a-relaxation fit the Vogel-Tammann-Fulcher (VTF) equation. ESR spin-probe studies of the glassy crystalline phase of cyclohexanol show that there is a marked decrease in the correlation time above the glasslike transition temperature. The present studies suggest the similarity between glassy crystals having long-range orientational disorder and glasses which are known to betra nslationally disordered.
Resumo:
The frequency and temperature dependences of the dielectric constant and the electrical conductivity of the transparent glasses in the composition Li2O-3B(2)O(3) were investigated in the 100 Hz-10 MHz frequency range. The dielectric constant and the loss in the low frequency regime were electrode material dependent. Dielectric and electrical relaxations were, respectively, analyzed using the Cole-Cole and electric modulus formalisms. The dielectric relaxation mechanism was discussed in the framework of electrode and charge carrier (hopping of the ions) related polarization using generalized Cole-Cole expression. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was 0.80 +/- 0.02 eV, which was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. Temperature dependent behavior of the frequency exponent (n) suggested that the correlated barrier hopping model was the most apposite to rationalize the electrical transport phenomenon in Li2O-3B(2)O(3) glasses. These glasses on heating at 933 K/10 h resulted in the known nonlinear optical phase LiB3O5.
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
The propagation characteristics of electromagnetic waves in a dielectric-lined rectangular metal waveguide have been studied. The lining on the two side walls (E-plane) together with the air space in between them is considered as a homogeneous equivalent dielectric medium whose equivalent dielectric constant is derived by using electrostatic theory. The theoretical work is based on the fact that LSE and LSM modes can be propagated in a rectangular metal waveguide lined in the two longer sides (H-plane) by dielectric lining. Experimental verification of the guide wavelength at 'X', 'ku' and 'Ka' bands and cut-off frequency are reported.
Resumo:
Optically clear glasses were fabricated by quenching the melt of CaCO3-Bi2O3-B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies These glasses were found to. have high thermal stability parameter (S). The optical transmission studies carried out in the 200-2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained approximate to 60% transparency despite having nano-crystallites (approximate to 50-100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole-Cole equation was employed to rationalize the impedance data.