906 resultados para "Cytokine like factor 1"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mechanisms underlying the effect of estrogen exposure on breast cancer risk remain unclear. Insulin-like growth factor-1 (IGF-1) levels have been positively associated with breast cancer and are a potential mechanism. Objectives: The objectives of this thesis are: 1) to explore whether the reproductive risk factors and the lifetime cumulative number of menstrual cycles (LCMC), as measures for long-term estrogen exposure, are associated with IGF-1 levels, and 2) to examine the effect of an aromatase inhibitor (AI) on IGF-1 levels, and the potential interaction with BMI. Methods: A cross sectional study and a randomized controlled trial nested with the MAP.3 chemoprevention trial were used to address objective 1 and 2, respectively. 567 postmenopausal women were selected. Anthropometric measurements, lifestyle factors, reproductive characteristics and serum IGF-1 concentrations were collected at baseline and one year. Objective 1. The LCMC was computed as a composite measure of the reproductive characteristics. Multivariable linear regression models were used to assess the association between IGF-1 levels and LCMC and the hormonal risk factors, while adjusting for potential covariates. Objective 2. Changes in IGF-1 were compared between the exemestane and placebo, and effect modification by BMI was tested with an interaction term. Results: Objective 1. Women aged 55 years or older at menopause had 16.26 ng/mL (95% CI: 1.76, 30.75) higher IGF-1 compared to women aged less than 50 years at menopause. Women in the highest category of menstrual cycles (≥500 cycles) had an average 19.00 ng/mL (95%CI: 5.86, 32.14) higher concentration of IGF-1 compared to women in the lowest category (<350). Exogenous hormones had no effect on postmenopausal IGF-1 levels. Objective 2. Exemestane significantly increased IGF-1 levels by 18% (95% CI: 14%-22%); while, placebo had no effect on IGF-1. The changes in IGF-1 were significantly different between the treatment arms (P<0.0001) and no significant interaction was observed between treatment and BMI on IGF-1 changes (P=0.1327). Conclusion: Objective 1. Larger number of menstrual cycles and a later age at menopause are positively associated with IGF-1. IGF-1 may be one mechanism by which prolonged estrogen exposure increases cancer risk. Objective 2. We conclude that the reduced cancer risk observed with AI therapy likely occurs in an IGF-1 independent mechanism. Further studies exploring the clinical consequences of increased IGF-1 on AI therapy are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Saliva analysis is rapidly developing as a tool for the assessment of biomarkers of sports training. It remains poorly understood whether a short bout of sport training can alter some salivary immune biomarkers. Aim: To investigate the effect of acute exercise using football training session on salivary flow rate, salivary free Insulin-like Growth Factor-1 (IGF-1) and Interleukin 10 (IL-10). Methods: Saliva samples were collected before and immediately after a football session. Salivary flow rates, salivary levels of free IGF-1 and IL-10 (using ELISA) were determined. Data was analyzed and compared using Related Samples Wilcoxon Signed Rank test (non-parametric test). Relationships between salivary flow rate and levels of free IGF-1 and IL-10 were determined using Spearman correlation test. Results: There were 22 male footballers with a mean age of 20.46 years. Salivary flow rate reduced significantly (p = 0.01) after the training session while salivary levels of free IGF-1 and IL-10 did not show any significant change. Also, there were no correlations between salivary flow rates and salivary levels of free IGF-1 and IL-10 before and after exercise. Conclusion: These findings suggest that acute exercise caused significant reduction in salivary flow rate but no change in the levels of salivary free IGF-1 and IL-10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Glucagon-like peptide-1 (GLP-1) therapies are routinely used for glycaemic control in diabetes and their emerging cardiovascular actions have been a major recent research focus. In addition to GLP-1 receptor activation, the metabolically-inactive breakdown product, GLP-1(9-36)amide, also appears to exert notable cardiovascular effects, including protection against acute cardiac ischaemia. Here, we specifically studied the influence of GLP-1(9-36)amide on chronic post-myocardial infarction (MI) remodelling, which is a major driver of heart failure progression.

METHODS: Adult female C57BL/6 J mice were subjected to permanent coronary artery ligation or sham surgery prior to continuous infusion with GLP-1(9-36)amide or vehicle control for 4 weeks.

RESULTS: Infarct size was similar between groups with no effect of GLP-1(9-36)amide on MI-induced cardiac hypertrophy, although modest reduction of in vitro phenylephrine-induced H9c2 cardiomyoblast hypertrophy was observed. Whilst echocardiographic systolic dysfunction post-MI remained unchanged, diastolic dysfunction (decreased mitral valve E/A ratio, increased E wave deceleration rate) was improved by GLP-1(9-36)amide treatment. This was associated with modulation of genes related to extracellular matrix turnover (MMP-2, MMP-9, TIMP-2), although interstitial fibrosis and pro-fibrotic gene expression were unaltered by GLP-1(9-36)amide. Cardiac macrophage infiltration was also reduced by GLP-1(9-36)amide together with pro-inflammatory cytokine expression (IL-1β, IL-6, MCP-1), whilst in vitro studies using RAW264.7 macrophages revealed global potentiation of basal pro-inflammatory and tissue protective cytokines (e.g. IL-1β, TNF-α, IL-10, Fizz1) in the presence of GLP-1(9-36)amide versus exendin-4.

CONCLUSIONS: These data suggest that GLP-1(9-36)amide confers selective protection against post-MI remodelling via preferential preservation of diastolic function, most likely due to modulation of infiltrating macrophages, indicating that this often overlooked GLP-1 breakdown product may exert significant actions in this setting which should be considered in the context of GLP-1 therapy in patients with cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to have various biologic and pathophysiologic effects on organisms. The molecular mechanisms by which NO exerts harmful effects are unknown, although various O2 radicals and ions that result from reactivity of NO are presumed to be involved. Here we report that adaptive cellular response controlled by the transcription factor hypoxia-inducible factor 1 (HIF-1) in hypoxia is suppressed by NO. Induction of erythropoietin and glycolytic aldolase A mRNAs in hypoxically cultured Hep3B cells, a human hepatoma cell line, was completely and partially inhibited, respectively, by the addition of sodium nitroprusside (SNP), which spontaneously releases NO. A reporter plasmid carrying four hypoxia-response element sequences connected to the luciferase structural gene was constructed and transfected into Hep3B cells. Inducibly expressed luciferase activity in hypoxia was inhibited by the addition of SNP and two other structurally different NO donors, S-nitroso-l-glutathione and 3-morpholinosydnonimine, giving IC50 values of 7.8, 211, and 490 μM, respectively. Inhibition by SNP was also observed in Neuro 2A and HeLa cells, indicating that the inhibition was not cell-type-specific. The vascular endothelial growth factor promoter activity that is controlled by HIF-1 was also inhibited by SNP (IC50 = 6.6 μM). Induction generated by the addition of cobalt ion (this treatment mimics hypoxia) was also inhibited by SNP (IC50 = 2.5 μM). Increased luciferase activity expressed by cotransfection of effector plasmids for HIF-1α or HIF-1α-like factor in hypoxia was also inhibited by the NO donor. We also showed that the inhibition was performed by blocking an activation step of HIF-1α to a DNA-binding form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using 3H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1–GDP, but binds to the transitory Sec7d–ARF1–GDP complex and stabilizes it. Two pairs of residues at positions 190–191 and 198–208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1–GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1–GDP and a surface encompassing residues 190–208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1–GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix–loop–helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.