980 resultados para water isotopes
Resumo:
Hess Rise, in the western Pacific Ocean, formed in the mid-Cretaceous south of the equator and moved north with the Pacific Plate (Lancelot and Larson, 1975; Lancelot, 1978; Valuer et al., 1979). Southern Hess Rise was a volcanic archipelago, at least until late Albian time, after which it subsided to become one of the major aseismic rises in the present western Pacific. A second pulse of volcanic activity apparently occurred in the Campanian-Maastrichtian interval, which may be related to tectonic uplift of Hess Rise (Valuer and Jefferson, this volume). Trachytic rocks underlie 412 meters of carbonate sediments at Site 465 on southern Hess Rise. Twenty-four meters of trachyte were recovered from a 64-meter cored interval. The rocks are relatively homogeneous in texture, color, and composition, indicating that the cored sequence was probably part of only one magmatic event (Seifert et al., this volume). Large (> 5-mm) vesicles and oxidized parts of some flows suggest subaerial or shallow-water extrusions. The rocks are high in silica and relatively rich in Na2O, K2O, and light rare-earth elements. The upper part of the volcanic-rock sequence is a breccia, the fragments cemented by calcite, pyrite, and rare barite. Some of the resultant veins are more than 1 cm thick. In addition to the veins, many vesicles are also filled with these minerals. Brecciation and the number and thickness of veins decrease with depth in the hole. The degree of weathering, as indicated by water content, also decreases with depth.
Resumo:
We studied variations in terrigenous (TOM) and marine organic matter (MOM) input in a sediment core on the northern Barents Sea margin over the last 30 ka. Using a multiproxy approach, we reconstructed processes controlling organic carbon deposition and investigated their paleoceanographic significance in the North Atlantic-Arctic Gateways. Variations in paleo-surface-water productivity are not documented in amount and composition of organic carbon. The highest level of MOM was deposited during 25-23 ka as a result of scavenging on fine-grained, reworked, and TOM-rich material released by the retreating Svalbard/Barents Sea ice sheet during the late Weichselian. A second peak of MOM is preserved because of sorptive protection by detrital and terrigenous organic matter, higher surface-water productivity due to permanent intrusion of Atlantic water, and high suspension load release by melting sea ice during 15.9-11.2 ka.
Resumo:
Ocean circulation may have undergone reductions and reinvigorations in the past closely tied to regional climate changes. Measurements of 231Pa/230Th ratios in a sediment core from the Bermuda Rise have been interpreted as evidence that the Atlantic Meridional Overturning Circulation (AMOC) was weakened or completely eliminated during a period of catastrophic iceberg discharges (Heinrich-Event 1, H1). Here we present new data from the Bermuda Rise that show further 231Pa/230Th peaks during Heinrich-2 (H2) and Heinrich-3 (H3). Additionally, a tight correlation between diatom abundances (biogenic silica) and 231Pa/230Th is discovered in this core. Our results redirect the interpretation of 231Pa/230Th from the Bermuda Rise as a proxy for ocean circulation towards a proxy that reacts highly sensitive to changes of particle composition and water mass properties.
Resumo:
Strontium concentrations and 87Sr/86Sr values were measured on pore-water and sedimentary carbonate samples from sediments recovered at Sites 1049-1053 on the Blake Spur during Ocean Drilling Program Leg 171B. These sites form a 40-km-long depth transect extending along the crest of the Blake Spur from near the upper edge of the Blake Escarpment (a steep cliff composed of Mesozoic carbonates) westward toward the interior of the Blake-Bahama Platform. Although these sites were selected for paleoceanographic purposes, they also form a hydrologic transect across the upper eastern flank of the Blake-Bahama Platform. Here, we use pore-water strontium concentrations and isotopes as a proxy to define patterns of fluid movement through the flanks of this platform. Pore-water strontium concentration increases with depth at all sites implying that strontium has been added during sediment burial and diagenesis. The isotopic values decrease from seawater-like values in the shallow samples (~0.70913) to values as low as 0.707342 in one of the deepest samples (~625 meters below seafloor). The change in pore-water strontium isotopic values is independent of the strontium isotopic compositions predicted from the host sediment age and measured on bulk carbonate in some samples. In most cases the difference between predicted sediment strontium isotopic composition and measured value is less than ±2 about the mean of the measured strontium value. Both the increase in concentration and the decrease in the strontium isotope values with increasing depth indicate that strontium was expelled from older carbonates. The strontium concentration and isotope profiles vary between sites according to their proximity to the Blake-Bahama Platform edge. Profiles from Site 1049 (nearest the platform edge) show the greatest amount of mixing with modern seawater, whereas the site most distal to the platform edge (Site 1052) shows the most significant influence of older, deeper carbonates on the pore-water strontium isotopic composition.