928 resultados para varactor tuning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A discrete-time algorithm is presented which is based on a predictive control scheme in the form of dynamic matrix control. A set of control inputs are calculated and made available at each time instant, the actual input applied being a weighted summation of the inputs within the set. The algorithm is directly applicable in a self-tuning format and is therefore suitable for slowly time-varying systems in a noisy environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, an overview is given of some of the more common approaches taken in applying adaptive control. Gain scheduling, model reference control and self-tuning control are all discussed and in each case suggestions are given for further reading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of a range of dinuclear Cu(II) dithiocarbamate (dtc)-based macrocycles and their characterisation are described. By carefully tuning the size of the aromatic spacer, cavities of different dimensions can be designed. The length and flexibility of the chosen spacer group dictates the intermetallic distance and hence the degree of communication between the two metal centres as evidenced by electrochemical and EPR experiments. This is illustrated by crystallographic evidence that show the macrocycles can host guests (such as CH2Cl2) or can fold and form unexpected Cu(I) dtc clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ‘action observation network’ (AON), which is thought to translate observed actions into motor codes required for their execution, is biologically tuned: it responds more to observation of human, than non-human, movement. This biological specificity has been taken to support the hypothesis that the AON underlies various social functions, such as theory of mind and action understanding, and that, when it is active during observation of non-human agents like humanoid robots, it is a sign of ascription of human mental states to these agents. This review will outline evidence for biological tuning in the AON, examining the features which generate it, and concluding that there is evidence for tuning to both the form and kinematic profile of observed movements, and little evidence for tuning to belief about stimulus identity. It will propose that a likely reason for biological tuning is that human actions, relative to non-biological movements, have been observed more frequently while executing corresponding actions. If the associative hypothesis of the AON is correct, and the network indeed supports social functioning, sensorimotor experience with non-human agents may help us to predict, and therefore interpret, their movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-perfect vector phase conjugation was achieved at 488 nm in a methyl red dye impregnated polymethylmethacrylate film by employing a temperature tuning technique. Using a degenerate four-wave mixing geometry with vertically polarized counterpropagating pump beams, intensity and polarization gratings were written in the dye/polymer system using a vertically or horizontally polarized weak probe beam. Over a limited temperature range, as the sample was heated, the probe reflectivity from the polarization grating dropped but the reflectivity from the intensity grating rose sharply. At a sample temperature of approximately 50°C, the reflectivities of the gratings were measured to be equal and we confirmed that, at this temperature, the measured vector phase conjugate fidelity was very close to unity. We discuss a possible explanation of this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiation of the mammals provides a 165-million-year test case for evolutionary theories of how species occupy and then fill ecological niches. It is widely assumed that species often diverge rapidly early in their evolution, and that this is followed by a longer, drawn-out period of slower evolutionary fine-tuning as natural selection fits organisms into an increasingly occupied niche space1,2. But recent studies have hinted that the process may not be so simple3–5. Here we apply statistical methods that automatically detect temporal shifts in the rate of evolution through time to a comprehensive mammalian phylogeny6 and data set7 of body sizes of 3,185 extant species. Unexpectedly, the majority of mammal species, including two of the most speciose orders (Rodentia and Chiroptera), have no history of substantial and sustained increases in the rates of evolution. Instead, a subset of the mammals has experienced an explosive increase (between 10- and 52-fold) in the rate of evolution along the single branch leading to the common ancestor of their monophyletic group (for example Chiroptera), followed by a quick return to lower or background levels. The remaining species are a taxonomically diverse assemblage showing a significant, sustained increase or decrease in their rates of evolution. These results necessarily decouple morphological diversification from speciation and suggest that the processes that give rise to the morphological diversity of a class of animals are far more free to vary than previously considered. Niches do not seem to fill up, and diversity seems to arise whenever, wherever and at whatever rate it is advantageous.