997 resultados para uptake efficiency
Resumo:
Senate File 2355, 85th General Assembly, states the Iowa Department of Transportation shall submit annual reports regarding the implementation of efficiency measures identified in the “Road Use Tax Fund Efficiency Report,” January 2012. This report shall provide details of activities undertaken in the previous year relating to one-time and long-term program efficiencies and partnership efficiencies. Issues to be covered in the reports shall include but are not limited to savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
This study aimed to compare oxygen uptake ( V˙O2), hormone and plasma metabolite responses during the 30 min after submaximal incremental exercise (Incr) performed at the same relative/absolute exercise intensity and duration in lean (L) and obese (O) men. Eight L and 8 O men (BMI: 22.9±0.4; 37.2±1.8 kg · m(-2)) completed Incr and were then seated for 30 min. V˙O2 was monitored during the first 10 min and from the 25-30(th) minutes of recovery. Blood samples were drawn for the determination of hormone (catecholamines, insulin) and plasma metabolite (NEFA, glycerol) concentrations. Excess post-exercise oxygen consumption (EPOC) magnitude during the first 10 min was similar in O and in L (3.5±0.4; 3.4±0.3 liters, respectively, p=0.86). When normalized to percent change ( V˙O2END=100%), % V˙O2END during recovery was significantly higher from 90-120 s in O than in L (p≤0.04). There were no significant differences in catecholamines (p≥0.24), whereas insulin was significantly higher in O than in L during recovery (p=0.01). The time-course of glycerol was similar from 10-30 min of recovery (-42% for L; -41% for O, p=0.85), whereas significantly different patterns of NEFA were found from 10-30 min of recovery between groups (-18% for L; +8% for O, p=0.03). Despite similar EPOC, a difference in V˙O2 modulation between groups was observed, likely due to faster initial rates of V˙O2 decline in L than in O. The different patterns of NEFA between groups may suggest a lower NEFA reesterification during recovery in O, which was not involved in the rapid EPOC component.
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
Resumo:
This study compares the effects of two short multiple-sprint exercise (MSE) (6 × 6 s) sessions with two different recovery durations (30 s or 180 s) on the slow component of oxygen uptake ([Formula: see text]O(2)) during subsequent high-intensity exercise. Ten male subjects performed a 6-min cycling test at 50% of the difference between the gas exchange threshold and [Formula: see text]O(2peak) (Δ50). Then, the subjects performed two MSEs of 6 × 6 s separated by two intersprint recoveries of 30 s (MSE(30)) and 180 s (MSE(180)), followed 10 min later by the Δ50 (Δ50(30) and Δ50(180), respectively). Electromyography (EMG) activities of the vastus medialis and lateralis were measured throughout each exercise bout. During MSE(30), muscle activity (root mean square) increased significantly (p ≤ 0.04), with a significant leftward-shifted median frequency of the power density spectrum (MDF; p ≤ 0.01), whereas MDF was significantly rightward-shifted during MSE(180) (p = 0.02). The mean [Formula: see text]O(2) value was significantly higher in MSE(30) than in MSE(180) (p < 0.001). During Δ50(30), [Formula: see text]O(2) and the deoxygenated hemoglobin ([HHb]) slow components were significantly reduced (-27%, p = 0.02, and -34%, p = 0.003, respectively) compared with Δ50. There were no significant modifications of the [Formula: see text]O(2) slow component in Δ50(180) compared with Δ50 (p = 0.32). The neuromuscular and metabolic adaptations during MSE(30) (preferential activation of type I muscle fibers evidenced by decreased MDF and a greater aerobic metabolism contribution to the required energy demands), but not during MSE(180), may lead to reduced [Formula: see text]O(2) and [HHb] slow components, suggesting an alteration in motor units recruitment profile (i.e., change in the type of muscle fibers recruited) and (or) an improved muscle O(2) delivery during subsequent exercise.
Resumo:
BACKGROUND AND AIMS: Fish oil (FO) supplementation prevents the development of obesity and insulin resistance, and upregulate the expression of UCP3 in skeletal muscle in rodents. This may represent indirect evidence that FO promotes fat oxidation and/or alter energy efficiency. The aim of this study was to evaluate whether such effects can be observed in humans. The metabolic effects of FO were assessed during exercise in order to obtain a direct measurement of energy efficiency. METHODS: Eight healthy male volunteers were studied with and without supplementation with 7.2 g/day FO (including 1.1 g/day eicosopentaenoic acid and 0.7 g/day decosahexaenoic acid) during 14 days. Their VO(2 max) was measured on cycle ergometer. Thereafter, energy metabolism (substrate oxidation, energy expenditure and energy efficiency) was assessed during a 30 min cycling exercise at 50% VO(2 max) performed 2 h 30 after a standardized, high carbohydrate breakfast. RESULTS: VO(2 max) was 38.6+/-2.2 after FO and 38.4+/-2.0 (mL x kg(-1) x min(-1)) in control conditions (NS). Basal plasma glucose, insulin and NEFA concentrations, and energy metabolism were similar with FO and in controls. During exercise, the increases in plasma NEFA concentrations, energy expenditure, glucose and lipid oxidation, and the decreases in glycaemia and insulinemia were not altered by FO intake. Energy efficiency was 22.4+/-0.6% after FO vs 21.8+/-0.7% in controls. In order to ascertain that the absence of effects of FO was not due to consumption of a carbohydrate meal immediately before exercise, 4 of the 8 subjects were re-studied in fasting conditions, FO also failed to alter energy efficiency in this subset of studies. CONCLUSION: FO supplementation did not significantly alter energy metabolism and energy efficiency during exercise in healthy humans.
Resumo:
The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of São Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of São Paulo.
Resumo:
Contemporary coronary magnetic resonance angiography techniques suffer from signal-to-noise ratio (SNR) constraints. We propose a method to enhance SNR in gradient echo coronary magnetic resonance angiography by using sensitivity encoding (SENSE). While the use of sensitivity encoding to improve SNR seems counterintuitive, it can be exploited by reducing the number of radiofrequency excitations during the acquisition window while lowering the signal readout bandwidth, therefore improving the radiofrequency receive to radiofrequency transmit duty cycle. Under certain conditions, this leads to improved SNR. The use of sensitivity encoding for improved SNR in three-dimensional coronary magnetic resonance angiography is investigated using numerical simulations and an in vitro and an in vivo study. A maximum 55% SNR enhancement for coronary magnetic resonance angiography was found both in vitro and in vivo, which is well consistent with the numerical simulations. This method is most suitable for spoiled gradient echo coronary magnetic resonance angiography in which a high temporal and spatial resolution is required.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion
Resumo:
Vitamin K antagonists (VKAs) are prescribed worldwide and remain the oral anticoagulant of choice. These drugs are characterized by a narrow therapeutic index and a large inter- and intra-individual variability. P-glycoprotein could contribute to this variability. The aim of this study was to investigate the involvement of P-gp in the transport of acenocoumarol, phenprocoumon and warfarin using an in vitro Caco-2 cell monolayer model. These results were compared with those obtained with rivaroxaban, a new oral anticoagulant known to be a P-gp substrate. The transport of these four drugs was assessed at pH conditions 6.8/7.4 in the presence or absence of the P-gp inhibitor cyclosporine A (10 μM) and the more potent and specific P-gp inhibitor valspodar (5 μM). Analytical quantification was performed by LC/MS. With an efflux ratio of 1.7 and a significant decrease in the efflux (Papp B-A), in the presence of P-gp inhibitors at a concentration of 50 μM, acenocoumarol can be considered as a weak P-gp substrate. Concerning phenprocoumon, the results suggest that this molecule is a poor P-gp substrate. The P-gp inhibitors did not affect significantly the transport of warfarin. The efflux of rivaroxaban was strongly inhibited by the two P-gp inhibitors. In conclusion, none of the three VKAs tested are strong P-gp substrates. However, acenocoumarol can be considered as a weak P-gp substrate and phenprocoumon as a poor P-gp substrate.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
BACKGROUND: In specific conditions, photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial barrier in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We hypothesized that Visudyne(R)-mediated PDT could selectively increase liposomal doxorubicin (Liporubicin) uptake in sarcoma tumors to rodent lungs while sparing the normal surrounding tissue. MATERIALS AND METHODS: Sarcoma tumors were generated subpleurally in the left lower lung lobe of 66 Fischer rats. Ten days following sarcoma implantation, tumors underwent different pre-treatment schemes: no PDT (controls), low-dose PDT (0.0625 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)) and high-dose PDT (0.125 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)). Liporubicin was then administered and allowed to circulate for 1, 3, or 6 hours. At the end of each treatment scheme, we assessed the uptake of Liporubicin in tumor and lung tissues by high-performance liquid chromatography and fluorescence microscopy. RESULTS: In all PDT-treated groups, there was a significant enhancement of Liporubicin uptake in tumors compared to controls after 3 and 6 hours of drug circulation. In addition, Liporubicin distribution within the normal lung tissue was not affected by PDT. Thus, PDT pre-treatment significantly enhanced the ratio of tumor-to-lung drug uptake compared to controls. Finally, fluorescence microscopy revealed a well-detectable Liporubicin signaling throughout PDT-treated tumors but not in controls. CONCLUSIONS: PDT is a tumor-specific enhancer of Liporubicin distribution in sarcoma lung tumors which may find a translation in clinics.
Resumo:
The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW) of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.
Resumo:
Animals can compete for resources by displaying various acoustic signals that may differentially affect the outcome of competition. We propose the hypothesis that the most efficient signal to deter opponents should be the one that most honestly reveals motivation to compete. We tested this hypothesis in the barn owl (Tyto alba) in which nestlings produce more calls of longer duration than siblings to compete for priority access to the indivisible prey item their parents will deliver next. Because nestlings increase call rate to a larger extent than call duration when they become hungrier, call rate would signal more accurately hunger level. This leads us to propose three predictions. First, a high number of calls should be more efficient in deterring siblings to compete than long calls. Second, the rate at which an individual calls should be more sensitive to variation in the intensity of the sibling vocal competition than the duration of its calls. Third, call rate should influence competitors' vocalization for a longer period of time than call duration. To test these three predictions we performed playback experiments by broadcasting to singleton nestlings calls of varying durations and at different rates. According to the first prediction, singleton nestlings became less vocal to a larger extent when we broadcasted more calls compared to longer calls. In line with the second prediction, nestlings reduced vocalization rate to a larger extent than call duration when we broadcasted more or longer calls. Finally, call rate had a longer influence on opponent's vocal behavior than call duration. Young animals thus actively and differentially use multiple signaling components to compete with their siblings over parental resources.