944 resultados para transient thermal distortion analysis
Resumo:
The greatly increased risk of being killed or injured in a car crash for the young novice driver has been recognised in the road safety and injury prevention literature for decades. Risky driving behaviour has consistently been found to contribute to traffic crashes. Researchers have devised a number of instruments to measure this risky driving behaviour. One tool developed specifically to measure the risky behaviour of young novice drivers is the Behaviour of Young Novice Drivers Scale (BYNDS) (Scott-Parker et al., 2010). The BYNDS consists of 44 items comprising five subscales for transient violations, fixed violations, misjudgement, risky driving exposure, and driving in response to their mood. The factor structure of the BYNDS has not been examined since its development in a matched sample of 476 novice drivers aged 17-25 years. Method: The current research attempted to refine the BYNDS and explore its relationship with the self-reported crash and offence involvement and driving intentions of 390 drivers aged 17-25 years (M = 18.23, SD = 1.58) in Queensland, Australia, during their first six months of independent driving with a Provisional (intermediate) driver’s licence. A confirmatory factor analysis was undertaken examining the fit of the originally proposed BYNDS measurement model. Results: The model was not a good fit to the data. A number of iterations removed items with low factor loadings, resulting in a 36-item revised BYNDS which was a good fit to the data. The revised BYNDS was highly internally consistent. Crashes were associated with fixed violations, risky driving exposure, and misjudgement; offences were moderately associated with risky driving exposure and transient violations; and road-rule compliance intentions were highly associated with transient violations. Conclusions: Applications of the BYNDS in other young novice driver populations will further explore the factor structure of both the original and revised BYNDS. The relationships between BYNDS subscales and self-reported risky behaviour and attitudes can also inform countermeasure development, such as targeting young novice driver non-compliance through enforcement and education initiatives.
Resumo:
Typical reference year (TRY) weather data is often used to represent the long term weather pattern for building simulation and design. Through the analysis of ten year historical hourly weather data for seven Australian major capital cities using the frequencies procedure of descriptive statistics analysis (by SPSS software), this paper investigates: • the closeness of the typical reference year (TRY) weather data in representing the long term weather pattern; • the variations and common features that may exist between relatively hot and cold years. It is found that for the given set of input data, in comparison with the other weather elements, the discrepancy between TRY and multiple years is much smaller for the dry bulb temperature, relative humidity and global solar irradiance. The overall distribution patterns of key weather elements are also generally similar between the hot and cold years, but with some shift and/or small distortion. There is little common tendency of change between the hot and the cold years for different weather variables at different study locations.
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Gypsum plasterboards are widely used to protect light gauge steel frame (LSF) walls all over the world. Gypsum contains free and chemically bound water in its crystal structure. Plasterboard also contains gypsum (CaSO4.2H2O) and calcium carbonate (CaCO3). The dehydration of gypsum and the decomposition of calcium carbonate absorb heat, and thus are able to protect LSF walls from fires. Kolarkar and Mahendran (2008) developed an innovative composite wall panel system, where the insulation was sandwiched between two plasterboards to improve the thermal and structural performance of LSF wall panels under fire conditions. In order to understand the performance of gypsum plasterboards and LSF wall panels under standard fire conditions, many experiments were conducted in the Fire Research Laboratory of Queensland University of Technology (Kolarkar, 2010). Fire tests were conducted on single, double and triple layers of Type X gypsum plasterboards and load bearing LSF wall panels under standard fire conditions. However, suitable numerical models have not been developed to investigate the thermal performance of LSF walls using the innovative composite panels under standard fire conditions. Continued reliance on expensive and time consuming fire tests is not acceptable. Therefore this research developed suitable numerical models to investigate the thermal performance of both plasterboard assemblies and load bearing LSF wall panels. SAFIR, a finite element program, was used to investigate the thermal performance of gypsum plasterboard assemblies and LSF wall panels under standard fire conditions. Appropriate values of important thermal properties were proposed for plasterboards and insulations based on laboratory tests, literature review and comparisons of finite element analysis results of small scale plasterboard assemblies from this research and corresponding experimental results from Kolarkar (2010). The important thermal properties (thermal conductivity, specific heat capacity and density) of gypsum plasterboard and insulation materials were proposed as functions of temperature and used in the numerical models of load bearing LSF wall panels. Using these thermal properties, the developed finite element models were able to accurately predict the time temperature profiles of plasterboard assemblies while they predicted them reasonably well for load bearing LSF wall systems despite the many complexities that are present in these LSF wall systems under fires. This thesis presents the details of the finite element models of plasterboard assemblies and load bearing LSF wall panels including those with the composite panels developed by Kolarkar and Mahendran (2008). It examines and compares the thermal performance of composite panels developed based on different insulating materials of varying densities and thicknesses based on 11 small scale tests, and makes suitable recommendations for improved fire performance of stud wall panels protected by these composite panels. It also presents the thermal performance data of LSF wall systems and demonstrates the superior performance of LSF wall systems using the composite panels. Using the developed finite element of models of LSF walls, this thesis has proposed new LSF wall systems with increased fire rating. The developed finite element models are particularly useful in comparing the thermal performance of different wall panel systems without time consuming and expensive fire tests.
Resumo:
Heat transfer through an attic space into or out of buildings is an important issue for attic-shaped houses in both hot and cold climates. One of the important objectives for design and construction of houses is to provide thermal comfort for occupants. In the present energy-conscious society, it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized. Relevant to these objectives, research into heat transfer in attics has been conducted for about three decades. The transient behaviour of an attic space is directly relevant to our daily life. Certain periods of the day or night may be considered as having a constant ambient temperature (e.g. during 11am - 2pm or 11pm - 2am). However, at other times during the day or night the ambient temperature changes with time (e.g. between 5am - 9am or 5pm - 9pm). Therefore, the analysis of steady state solution is not sufficient to describe the fluid flow and heat transfer in the attic space. The discussion of the transient development of the boundary is required. A theoretical understanding of the transient behaviour of the flow in the enclosure is performed through scaling analysis for sudden and ramp heating conditions. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. Those scaling predictions have been verified by a series of numerical simulations.
Resumo:
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.
Resumo:
Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]
Resumo:
The kaolinite intercalation and its application in polymer-based functional composites have attracted great interest, both in industry and in academia fields, since they frequently exhibit remarkable improvements in materials properties compared with the virgin polymer or conventional micro and macro-composites. Also of significant interest regarding the kaolinite intercalation complex is its thermal behavior and decomposition. This is because heating treatment of intercalated kaolinite is necessary for its further application, especially in the field of plastic and rubber industry. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on kaolinite intercalation with different reagents, the mechanism of intercalation complex formation as well as on thermal behavior and phase transition. This review attempts to summarize the most recent achievements in the thermal behavior study of kaolinite intercalation complexes obtained with the most common reagents including potassium acetate, formamide, dimethyl sulfoxide, hydrazine and urea. At the end of this paper, the further work on kaolinite intercalation complex was also proposed.
Resumo:
Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
A breaker restrike is an abnormal arcing phenomenon, leading to a possible breaker failure. Eventually, this failure leads to interruption of the transmission and distribution of the electricity supply system until the breaker is replaced. Before 2008, there was little evidence in the literature of monitoring techniques based on restrike measurement and interpretation produced during switching of capacitor banks and shunt reactor banks in power systems. In 2008 a non-intrusive radiometric restrike measurement method and a restrike hardware detection algorithm were developed by M.S. Ramli and B. Kasztenny. However, the limitations of the radiometric measurement method are a band limited frequency response as well as limitations in amplitude determination. Current restrike detection methods and algorithms require the use of wide bandwidth current transformers and high voltage dividers. A restrike switch model using Alternative Transient Program (ATP) and Wavelet Transforms which support diagnostics are proposed. Restrike phenomena become a new diagnostic process using measurements, ATP and Wavelet Transforms for online interrupter monitoring. This research project investigates the restrike switch model Parameter „A. dielectric voltage gradient related to a normal and slowed case of the contact opening velocity and the escalation voltages, which can be used as a diagnostic tool for a vacuum circuit-breaker (CB) at service voltages between 11 kV and 63 kV. During current interruption of an inductive load at current quenching or chopping, a transient voltage is developed across the contact gap. The dielectric strength of the gap should rise to a point to withstand this transient voltage. If it does not, the gap will flash over, resulting in a restrike. A straight line is fitted through the voltage points at flashover of the contact gap. This is the point at which the gap voltage has reached a value that exceeds the dielectric strength of the gap. This research shows that a change in opening contact velocity of the vacuum CB produces a corresponding change in the slope of the gap escalation voltage envelope. To investigate the diagnostic process, an ATP restrike switch model was modified with contact opening velocity computation for restrike waveform signature analyses along with experimental investigations. This also enhanced a mathematical CB model with the empirical dielectric model for SF6 (sulphur hexa-fluoride) CBs at service voltages above 63 kV and a generalised dielectric curve model for 12 kV CBs. A CB restrike can be predicted if there is a similar type of restrike waveform signatures for measured and simulated waveforms. The restrike switch model applications are used for: computer simulations as virtual experiments, including predicting breaker restrikes; estimating the interrupter remaining life of SF6 puffer CBs; checking system stresses; assessing point-on-wave (POW) operations; and for a restrike detection algorithm development using Wavelet Transforms. A simulated high frequency nozzle current magnitude was applied to an Equation (derived from the literature) which can calculate the life extension of the interrupter of a SF6 high voltage CB. The restrike waveform signatures for a medium and high voltage CB identify its possible failure mechanism such as delayed opening, degraded dielectric strength and improper contact travel. The simulated and measured restrike waveform signatures are analysed using Matlab software for automatic detection. Experimental investigation of a 12 kV vacuum CB diagnostic was carried out for the parameter determination and a passive antenna calibration was also successfully developed with applications for field implementation. The degradation features were also evaluated with a predictive interpretation technique from the experiments, and the subsequent simulation indicates that the drop in voltage related to the slow opening velocity mechanism measurement to give a degree of contact degradation. A predictive interpretation technique is a computer modeling for assessing switching device performance, which allows one to vary a single parameter at a time; this is often difficult to do experimentally because of the variable contact opening velocity. The significance of this thesis outcome is that it is a non-intrusive method developed using measurements, ATP and Wavelet Transforms to predict and interpret a breaker restrike risk. The measurements on high voltage circuit-breakers can identify degradation that can interrupt the distribution and transmission of an electricity supply system. It is hoped that the techniques for the monitoring of restrike phenomena developed by this research will form part of a diagnostic process that will be valuable for detecting breaker stresses relating to the interrupter lifetime. Suggestions for future research, including a field implementation proposal to validate the restrike switch model for ATP system studies and the hot dielectric strength curve model for SF6 CBs, are given in Appendix A.
Resumo:
Normal thoracic kyphosis Cobb angle for T5-T12 is most commonly reported as a range of 20-40º [1]. Patients with adolescent idiopathic scoliosis (AIS) exhibit a reduced thoracic kyphosis or hypokyphosis [2] accompanying the coronal and rotary distortion components. As a result, surgical restoration of the thoracic kyphosis while maintaining lumbar lordosis and overall sagittal balance is a critical aspect of achieving good clinical outcomes in AIS patients. Previous studies report an increase in thoracic kyphosis after anterior surgical approaches [3] and a flattening of sagittal contours following posterior approaches [4]. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality and are the subject of analysis in this study.
Resumo:
In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.