955 resultados para tourist area life cycle (TALC)
Resumo:
The present work describes an investigation concerning the acetylation of celluloses extracted from short-life-cycle plant sources (i.e. sugarcane bagasse and sisal fiber) as well as microcrystalline cellulose. The acetylation was carried out under homogeneous conditions using the solvent system N,N-dimethylacetamide/lithium chloride. The celluloses were characterized, and the characterizations included an evaluation of the amount of hemicellulose present in the materials obtained from lignocellulosics sources (sugarcane and sisal). The amount of LiCl was varied and its influence on the degree of acetate substitution was analyzed. It was found that the solvent system composition and the nature of the cellulose influenced both the state of chain dissolution and the product characteristics. The obtained results demonstrated the importance of developing specific studies on the dissolution process as well as on the derivatization of celluloses from various sources.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration
Resumo:
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Understanding the product`s `end-of-life` is important to reduce the environmental impact of the products` final disposal. When the initial stages of product development consider end-of-life aspects, which can be established by ecodesign (a proactive approach of environmental management that aims to reduce the total environmental impact of products), it becomes easier to close the loop of materials. The `end-of-life` ecodesign methods generally include more than one `end-of-life` strategy. Since product complexity varies substantially, some components, systems or sub-systems are easier to be recycled, reused or remanufactured than others. Remanufacture is an effective way to maintain products in a closed-loop, reducing both environmental impacts and costs of the manufacturing processes. This paper presents some ecodesign methods focused on the integration of different `end-of-life` strategies, with special attention to remanufacturing, given its increasing importance in the international scenario to reduce the life cycle impacts of products. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Product lifecycle management (PLM) innovates as it defines both the product as a central element to aggregate enterprise information and the lifecycle as a new time dimension for information integration and analysis. Because of its potential benefits to shorten innovation lead-times and to reduce costs, PLM has attracted a lot of attention at industry and at research. However, the current PLM implementation stage at most organisations still does not apply the lifecycle management concepts thoroughly. In order to close the existing realisation gap, this article presents a process oriented framework to support effective PLM implementation. The framework central point consists of a set of lifecycle oriented business process reference models which links the necessary fundamental concepts, enterprise knowledge and software solutions to effectively deploy PLM. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The construction, operation and demolition of buildings represent one of the most damaging human activities in the global environment nowadays and water use and conservation is one of the most representative environmental loads to be considered. Brazil, unlike some other countries, has not yet implemented its own body building environmental assessment. The development of an environmental assessment system requires the identification of the most important topics to be considered in each theme for each country or region, due to local environmental agenda. This article presents a summary of the main topics concerning water conservation considered in some international environmental building assessment systems and presents a proposal of topics to take into account in a Brazilian assessment system. Practical application: The civil construction industry is not only one of the biggest sectors in the economy but is also one of the greatest polluters. Along with standardisation, it is also necessary to establish measures to attract significantly higher levels in different topics related to sustainable construction. New mechanisms that allow users to recognise the difference between buildings with different sustainable performance levels need to be developed. This article will be used as a base for the development of a Brazilian system of assessment and rating for building environmental performance and sustainability in terms of water use and conservation.
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In a series of tritrophic-level interaction experiments, the effect of selected host plants of the spider mites, Tetranychus evansi and Tetranychus urticae, on Neozygites floridana was studied by evaluating the attachment of capilliconidia, presence of hyphal bodies in the infected mites, mortality from fungal infection, mummification and sporulation from fungus-killed mite cadavers. Host plants tested for T. evansi were tomato, cherry tomato, eggplant, nightshade, and pepper while host plants tested for T. urticae were strawberry, jack bean, cotton and Gerbera. Oviposition rate of the mites on each plant was determined to infer host plant suitability while host-switching determined antibiosis effect on fungal activity. T. evansi had a high oviposition on eggplant, tomato and nightshade but not on cherry tomato and pepper. T. urticae on jack bean resulted in a higher oviposition than on strawberry, cotton and Gerbera. Attachment of capilliconidia to the T. evansi body, presence of hyphal bodies in infected T. evansi and mortality from fungal infection were significantly higher on pepper, nightshade and tomato. The highest level of T. evansi mummification was observed on tomato. T. evansi cadavers from tomato and eggplant produced more primary conidia than those from cherry tomato, nightshade and pepper. Switching N. floridana infected T. evansi from one of five Solanaceous host plants to tomato had no prominent effect on N. floridana performance. For T. urticae, strawberry and jack bean provided the best N. floridana performance when considering all measured parameters. Strawberry also had the highest primary conidia production. This study shows that performance of N. floridana can vary with host plants and may be an important factor for the development of N. floridana epizootics. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
This is a draft for a chapter of the book version of my Ph.D thesis. The chapter addresses the following question: Are the creative processes of musical composers and academic economists essentially the same, or are there significant differences? The paper finds that there are deep similarities between the creative processes of theoretical economists and the creative processes of artists. The chapter builds a process oriented lifecycle account of creative activity, drawing on testimonial material from the arts and the sciences, and relates the model to the creative work of economists developing economic theory.
Resumo:
This paper reviews a wide range of tools for comprehensive sustainability assessments at whole tourism destinations, covering socio-cultural, economic and environmental issues. It considers their strengths, weaknesses and site specific applicability. It is intended to facilitate their selection (and combination where necessary). Tools covered include Sustainability Indicators, Environmental Impact Assessment, Life Cycle Assessment, Environmental Audits, Ecological Footprints, Multi-Criteria Analysis and Adaptive Environmental Assessment. Guidelines for evaluating their suitability for specific sites and situations are given as well as examples of their use.
Resumo:
Although the social dimension is often cited as the third leg of triple bottom line sustainability, there is at present general agreement on the difficulty of saying just what social sustainability is and how it can be related to enivironmental sustainability. This paper proposes that a sociotechnical understanding of the relationship beween human behaviour and technical developments provides a way of making the social dimension accessible to engineers, designers and developers. We draw on early work in master planned urban developments to show how a sociotechnical model, married to a life cycle assessment approach can help us understand and design for effective and efficient implementation of sustainability systems
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.