949 resultados para thin-layer chromatography (TLC)
Resumo:
This work is focused on the study of the fine speckle contrast present in planar view observations of matched and mismatched InGaAs layers grown by molecular beam epitaxy on InP substrates. Our results provide experimental evidence of the evolution of this fine structure with the mismatch, layer thickness, and growth temperature. The correlation of the influence of all these parameters on the appearance of the contrast modulation points to the development of the fine structure during the growth. Moreover, as growth proceeds, this structure shows a dynamic behavior which depends on the intrinsic layer substrate stress.
Resumo:
Nitrogen incorporates into Fe thin films during reactively sputtered TiN capping layer deposition. The influence that this nitrogen incorporation has both on the structure and magnetic properties is discussed for a series of Fe~001! thin films grown at different temperatures. A higher nitrogen content is accompanied by distortion in the Fe lattice and by reduction in the Fe magnetization saturation as well as in the effective anisotropy constant, K. The reduction of K brings as a consequence lowering in the coercive field with respect to equivalent Fe films with no nitrogen present.
Resumo:
We present a high‐resolution electron microscopy study of the microstructure of boron nitride thin films grown on silicon (100) by radio‐frequency plasma‐assisted chemical vapor deposition using B2H6 (1% in H2) and NH3 gases. Well‐adhered boron nitride films grown on the grounded electrode show a highly oriented hexagonal structure with the c‐axis parallel to the substrate surface throughout the film, without any interfacial amorphous layer. We ascribed this textured growth to an etching effect of atomic hydrogen present in the gas discharge. In contrast, films grown on the powered electrode, with compressive stress induced by ion bombardment, show a multilayered structure as observed by other authors, composed of an amorphous layer, a hexagonal layer with the c‐axis parallel to the substrate surface and another layer oriented at random
Resumo:
We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate.
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.
Resumo:
We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386
Resumo:
In this study, (011)-highly oriented Sr, Nb co-doped BiFeO3 (BFO) thin films were successfully grown on SrRuO3/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of 5.3 nm and average grain sizes of 65-70 nm for samples with different thicknesses. Remanent polarization values (2Pr) of 54 lC cm 2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe3þ/Fe2þ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/ SrRuO3/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.
Resumo:
Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.
Resumo:
Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.
Resumo:
Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.