866 resultados para the arousal theory
Resumo:
Background: In this study we evaluated the rehabilitation profile of Brazilian soccer players which underwent lower limb muscle lesions.Methods: This is a descriptive investigation. We evaluated 139 professional soccer players (1724 years old). We evaluated the following variables: muscle lesion diagnosis, symptoms, non steroidal anti-inflammatory used, physiotherapy treatment, which physiotherapy recourses was used if treated and train adaptation.Results: In great part of the athletes muscle lesion remained between 2 weeks and 1 month. Around 54% were diagnosed by a physician; the other part was diagnosed by a physical therapist. Non steroidal anti-inflammatory were prescribed by physicians in 42% of the cases; in 7% the physical therapist prescribed the medication while in 49% of the cases the masseur prescribed the drug. More than 1/4 of the athletes received physiotherapy treatement between 48 hours and 5 days. Isometric exercise therapy was applied in 15% of the cases. 63% were not accompanied by the physiotherapist on their return to the field. 48% received massages immediately after injury.Conclusion: We presented discrepancy between the recommended theory described by several researches and the practice. We indicate the necessity of recycling in a general context the rehabilitation of muscle injuries.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article analyzes the electrical parameters of a 3-phase transmission line using a 280-m-high steel tower that has been proposed for the Amazon transmission system in Brazil. The height of the line conductors and the distance between them are intrinsically related to the longitudinal and transverse parameters of the line. Hence, an accurate study is carried out in order to show the electrical variations between a transmission line using the new technology and a conventional 3-phase 440-kV line, considering a wide range of frequencies and variable soil resistivity. First, a brief review of the fundamental theory of line parameters is presented. In addition, by using a digital line model, simulations are carried out in the time domain to analyze possible and critical over-voltage transients on the proposed line representation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work studies the dynamical behavior of breathers in a single nonlinear lattice under the influence of energy changes. To create the breather we used the anti-continuous limit and studied its stability through the Floquet theory. Using the information entropy we calculated the effective number of oscillators with significant energy and determined if there is or not the formation of a spatially localized structure.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field theory (CFT) prescription involving the inclusion of generalized boundary conditions and a modified Legendre transform prescription. We find new and consistent results by considering a self-contained formulation which relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the natural extension of the Gibbons-Hawking surface term is generated.
Resumo:
We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.
Resumo:
A new approach to the description of a spin-2 particle in flat and curved spacetime is developed on the basis of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge symmetry of the spin-2 model, and derive the linearized Einstein operator from the fundamental identity of the teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the usual Riemannian approach, one needs to include the nonminimal (torsion dependent) coupling terms.
Resumo:
Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.
Resumo:
We show that the Skyrme theory possesses a submodel with an infinite number of local conserved currents. The constraints leading to the submodel explore a decomposition of SU(2) with a complex field parametrizing the symmetric space SU(2)/U(1) and a real field in the direction of U(1). We demonstrate that the Skyrmions of topological charges ii belong to such integrable sector of the theory. Our results open ways to the development of exact methods, compensating for the non-existence of a BPS type sector in the Skyrme theory. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.