937 resultados para temporal-logic model
Resumo:
The literature on policies, procedures, and practices of diversity management in organizations is currently fragmented and often contradictory in highlighting what is effective diversity management, and which organizational and societal factors facilitate or hinder its implementation. In order to provide a comprehensive and cohesive view of diversity management in organizations, we develop a multilevel model informed by the social identity approach that explains, on the basis of a work motivation logic, the processes by, and the conditions under which employee dissimilarity within diverse work groups is related to innovation, effectiveness, and well-being. Building on this new model, we then identify those work group factors (e.g., climate for inclusion and supervisory leadership), organizational factors (e.g., diversity management policies and procedures, and top management's diversity beliefs), and societal factors (e.g., legislation, socioeconomic situation, and culture) that are likely to contribute to the effective management of diversity in organizations. In our discussion of the theoretical implications of the proposed model, we offer a set of propositions to serve as a guide for future research. We conclude with a discussion of possible limitations of the model and practical implications for managing diversity in organizations. © 2014 Taylor & Francis.
Resumo:
We study the strong coupling (SC) limit of the anisotropic Kardar-Parisi-Zhang (KPZ) model. A systematic mapping of the continuum model to its lattice equivalent shows that in the SC limit, anisotropic perturbations destroy all spatial correlations but retain a temporal scaling which shows a remarkable crossover along one of the two spatial directions, the choice of direction depending on the relative strength of anisotropicity. The results agree with exact numerics and are expected to settle the long-standing SC problem of a KPZ model in the infinite range limit. © 2007 The American Physical Society.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset—the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from ‘‘biased competition’’, with the top–down bias being generated by parietal–frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
In this paper we present the design and analysis of an intonation model for text-to-speech (TTS) synthesis applications using a combination of Relational Tree (RT) and Fuzzy Logic (FL) technologies. The model is demonstrated using the Standard Yorùbá (SY) language. In the proposed intonation model, phonological information extracted from text is converted into an RT. RT is a sophisticated data structure that represents the peaks and valleys as well as the spatial structure of a waveform symbolically in the form of trees. An initial approximation to the RT, called Skeletal Tree (ST), is first generated algorithmically. The exact numerical values of the peaks and valleys on the ST is then computed using FL. Quantitative analysis of the result gives RMSE of 0.56 and 0.71 for peak and valley respectively. Mean Opinion Scores (MOS) of 9.5 and 6.8, on a scale of 1 - -10, was obtained for intelligibility and naturalness respectively.
Resumo:
Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.
Resumo:
Logic based Pattern Recognition extends the well known similarity models, where the distance measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This step appears as a way to alternative pattern recognition instruments through combining metric and logic hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in a model environment of binary attributes.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
The importance to solve the problem of spatial-temporal dynamics analysis in the system of economic security of different subjects of economic management is substantiated. Various methods and approaches for carrying out analysis of spatial-temporal dynamics in the system of economic security are considered. The basis of the generalized analysis of spatial-temporal dynamics in economic systems is offered.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
In this paper the key features of a two-layered model for describing the semantic of dynamical web resources are introduced. In the current Semantic Web proposal [Berners-Lee et al., 2001] web resources are classified into static ontologies which describes the semantic network of their inter-relationships [Kalianpur, 2001][Handschuh & Staab, 2002] and complex constraints described by logical quantified formula [Boley et al., 2001][McGuinnes & van Harmelen, 2004][McGuinnes et al., 2004], the basic idea is that software agents can use techniques of automatic reasoning in order to relate resources and to support sophisticated web application. On the other hand, web resources are also characterized by their dynamical aspects, which are not adequately addressed by current web models. Resources on the web are dynamical since, in the minimal case, they can appear or disappear from the web and their content is upgraded. In addition, resources can traverse different states, which characterized the resource life-cycle, each resource state corresponding to different possible uses of the resource. Finally most resources are timed, i.e. they information they provide make sense only if contextualised with respect to time, and their validity and accuracy is greatly bounded by time. Temporal projection and deduction based on dynamical and time constraints of the resources can be made and exploited by software agents [Hendler, 2001] in order to make previsions about the availability and the state of a resource, for deciding when consulting the resource itself or in order to deliberately induce a resource state change for reaching some agent goal, such as in the automated planning framework [Fikes & Nilsson, 1971][Bacchus & Kabanza,1998].
Resumo:
In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the respective likelihood values have been considered jointly and input to a decision logic which provides net likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Software product line modeling aims at capturing a set of software products in an economic yet meaningful way. We introduce a class of variability models that capture the sharing between the software artifacts forming the products of a software product line (SPL) in a hierarchical fashion, in terms of commonalities and orthogonalities. Such models are useful when analyzing and verifying all products of an SPL, since they provide a scheme for divide-and-conquer-style decomposition of the analysis or verification problem at hand. We define an abstract class of SPLs for which variability models can be constructed that are optimal w.r.t. the chosen representation of sharing. We show how the constructed models can be fed into a previously developed algorithmic technique for compositional verification of control-flow temporal safety properties, so that the properties to be verified are iteratively decomposed into simpler ones over orthogonal parts of the SPL, and are not re-verified over the shared parts. We provide tool support for our technique, and evaluate our tool on a small but realistic SPL of cash desks.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.