943 resultados para temperature-programmed techniques
Resumo:
Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.
Resumo:
Eigen-based techniques and other monolithic approaches to face recognition have long been a cornerstone in the face recognition community due to the high dimensionality of face images. Eigen-face techniques provide minimal reconstruction error and limit high-frequency content while linear discriminant-based techniques (fisher-faces) allow the construction of subspaces which preserve discriminatory information. This paper presents a frequency decomposition approach for improved face recognition performance utilising three well-known techniques: Wavelets; Gabor / Log-Gabor; and the Discrete Cosine Transform. Experimentation illustrates that frequency domain partitioning prior to dimensionality reduction increases the information available for classification and greatly increases face recognition performance for both eigen-face and fisher-face approaches.
Resumo:
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
Resumo:
In order to achieve meaningful reductions in individual ecological footprints, individuals must dramatically alter their day to day behaviours. Effective interventions will need to be evidence based and there is a necessity for the rapid transfer or communication of information from the point of research, into policy and practice. A number of health disciplines, including psychology and public health, share a common mission to promote health and well-being and it is becoming clear that the most practical pathway to achieving this mission is through interdisciplinary collaboration. This paper argues that an interdisciplinary collaborative approach will facilitate research that results in the rapid transfer of findings into policy and practice. The application of this approach is described in relation to the Green Living project which explored the psycho-social predictors of environmentally friendly behaviour. Following a qualitative pilot study, and in consultation with an expert panel comprising academics, industry professionals and government representatives, a self-administered mail survey was distributed to a random sample of 3000 residents of Brisbane and Moreton Bay (Queensland, Australia). The Green Living survey explored specific beliefs which included attitudes, norms, perceived control, intention and behaviour, as well as a number of other constructs such as environmental concern and altruism. This research has two beneficial outcomes. First, it will inform a practical model for predicting sustainable living behaviours and a number of local councils have already expressed an interest in making use of the results as part of their ongoing community engagement programs. Second, it provides an example of how a collaborative interdisciplinary project can provide a more comprehensive approach to research than can be accomplished by a single disciplinary project.
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 °C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 °C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality.
Resumo:
Objective To quantify the lagged effects of mean temperature on deaths from cardiovascular diseases in Brisbane, Australia. Design Polynomial distributed lag models were used to assess the percentage increase in mortality up to 30 days associated with an increase (or decrease) of 1°C above (or below) the threshold temperature. Setting Brisbane, Australia. Patients 22 805 cardiovascular deaths registered between 1996 and 2004. Main outcome measures Deaths from cardiovascular diseases. Results The results show a longer lagged effect in cold days and a shorter lagged effect in hot days. For the hot effect, a statistically significant association was observed only for lag 0–1 days. The percentage increase in mortality was found to be 3.7% (95% CI 0.4% to 7.1%) for people aged ≥65 years and 3.5% (95% CI 0.4% to 6.7%) for all ages associated with an increase of 1°C above the threshold temperature of 24°C. For the cold effect, a significant effect of temperature was found for 10–15 lag days. The percentage estimates for older people and all ages were 3.1% (95% CI 0.7% to 5.7%) and 2.8% (95% CI 0.5% to 5.1%), respectively, with a decrease of 1°C below the threshold temperature of 24°C. Conclusions The lagged effects lasted longer for cold temperatures but were apparently shorter for hot temperatures. There was no substantial difference in the lag effect of temperature on mortality between all ages and those aged ≥65 years in Brisbane, Australia.
Resumo:
Almost 10% of all births are preterm and 2.2% are stillbirths globally. Recent research has suggested that environmental factors may be a contributory cause to these adverse birth outcomes. The authors examined the relationship between ambient temperature and preterm birth and stillbirth in Brisbane, Australia between 2005 and 2009 (n = 101,870). They used a Cox proportional hazard model with live birth and stillbirth as competing risks. They also examined if there were periods of the pregnancy where exposure to high temperatures had a greater effect. Exposure to higher ambient temperatures during pregnancy increased the risk of stillbirth. The hazard ratio for stillbirth was 0.3 at 12 °C relative to the reference temperature at 21 °C. The temperature effect was greatest for fetuses of less than 36 weeks of gestation. There was an association between higher temperature and shorter gestation, as the hazard ratio for live birth was 0.96 at 15 °C and 1.02 at 25 °C. This effect was greatest at later gestational ages. The results provide strong evidence of an association between increased temperature and increased risk of stillbirth and shorter gestations.