947 resultados para tannin adsorption
Resumo:
Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
Antimicrobials, among other veterinary drugs, are used worldwide in industry and agriculture to protect animal health and prevent economic loss. In recent years, they have been detected in various environmental compartments, including soil, surface and groundwater and have become a topic of research interest. Emphasizing this class of compounds, this review presents the different pathways which veterinary drugs enter in the environment, in particular contaminate soils. Also are presented regulatory aspects and guidelines, adsorption/desorption and degradation of these compounds in soils and the consequences of its dispersal in the environment.
Resumo:
Considering that oral preparations made with peel green bananas (e.g. flour and extracts) demonstrated healing effects on mucous membranes and skin, this study evaluated the healing and the antimicrobial property of a topical preparation based on extract of Musa sapientum L., Musaceae, (apple banana) in surgically induced wounds in the skin of male Wistar rats, 100 g. The extract was obtained by decoction, the presence of tannins was detected by phytochemical screening and 10% of the extract was incorporated into the carbopol gel (CMS gel). The processes of healing and bacterial isolation were evaluated in the following experimental groups: control (no treatment), treatment with placebo or with the CMS gel. The healing of surgical wounds treated with the CMS gel was faster when compared with the control and placebo groups and the treatment with CMS gel also inhibited the growth of pyogenic bacteria and enterobacteria in the wounds. The results indicate that the extract of Musa sapientum epicarp has healing and antimicrobial properties (in vivo), probably, due to tannins.
Resumo:
The capacity of natural zeolites and its host rock (dacite) to remove Pb2+ and Cr3+ from aqueous solutions has been investigated. Results showed that both samples prefer to remove Pb2+ instead of Cr3+. Almost 100% of Pb2+ was removed from solutions with concentration until 50 mg L-1 and 100 mg L-1 of this metal, respectively by dacite and zeolite. The equilibrium of metals adsorption process was reached during the first 30 min by both materials. Na+ can be used to recover Pb2+, but not to remove Cr3+ from the treated samples. The Sips model showed a good fit for experimental data of this study.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
Interactions of cationic dye methylene blue (MB) with clay particles in aqueous suspension have been extensively studied. As already known, the number of natural negative charges on the clay modifies significantly the particle sizes dispersed in water and therefore the nature of the interaction with the dye. This work evaluated with UV-Vis spectroscopy method how the clay particle sizes weighted on the adsorption and rearrangement of the dye molecules in aqueous system. The results obtained from light-scattering measurements confirmed that larger particles are found in suspensions containing the high-charged clays as the visible absorption band related to the MB aggregates (570 nm) on these suspensions prevailed.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.
Resumo:
A commercial corrosion inhibitor used in petroleum production was characterized by means of infrared spectroscopy and energy dispersive spectroscopy (EDS). Predicting the adsorption behavior of corrosion inhibitor onto steel, sandstone and esmectite is the key to improve working conditions. In this study, the adsorption kinetics of inhibitor formulations in HCl 15% or in Mud Acid (HCl 13,5% and ammonium bifluoride) onto steel, sandstone and esmectite was determined by means of spectrophotometry. Kinetic parameters indicated that adsorption of inhibitor in the presence of bifluoride was favored. Moreover, the adsorption constant rate was the largest when the substrate was esmectite.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.