874 resultados para strengthening mechanisms
Resumo:
Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.
Resumo:
Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.
Resumo:
We have demonstrated that central administration of zinc in minute amounts induces a significant antidipsogenic action in dehydrated rats as well as in rats under central cholinergic and angiotensinergic stimulation. Here we show that acute third ventricle injections of zinc also block water intake induced by central ß-adrenergic stimulation in Wistar rats (190-250 g). Central inhibition of opioid pathways by naloxone reverses the zinc-induced antidipsogenic effect in dehydrated rats. After 120 min, rats receiving third ventricle injections of isoproterenol (160 nmol/rat) exhibited a significant increase in water intake (5.78 ± 0.54 ml/100 g body weight) compared to saline-treated controls (0.15 ± 0.07 ml/100 g body weight). Pretreatment with zinc (3.0, 30.0 and 300.0 pmol/rat, 45 min before isoproterenol injection) blocked water intake in a dose-dependent way. At the highest dose employed a complete blockade was demonstrable (0.54 ± 0.2 ml/100 g body weight). After 120 min, control (NaAc-treated) dehydrated rats, as expected, exhibited a high water intake (7.36 ± 0.39 ml/100 g body weight). Central administration of zinc blocked this response (2.5 ± 0.77 ml/100 g body weight). Naloxone pretreatment (82.5 nmol/rat, 30 min before zinc administration) reverted the water intake to the high levels observed in zinc-free dehydrated animals (7.04 ± 0.56 ml/100 g body weight). These data indicate that zinc is able to block water intake induced by central ß-adrenergic stimulation and that zinc-induced blockade of water intake in dehydrated rats may be, at least in part, due to stimulation of central opioid peptides.
Resumo:
Guanylate cyclases (GC) serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin), two disulfides (guanylin and uroguanylin) and three disulfides (E. coli stable toxin, ST). The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC) has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.
Resumo:
Calcium oxalate (CaOx) crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively) to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK) cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001) or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005) administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001) or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001). Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01), or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05); however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6), tetraethylammonium (1 mM; N = 6) or cromakalim (1 µM; N = 6). Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.
Resumo:
Context: Web services have been gaining popularity due to the success of service oriented architecture and cloud computing. Web services offer tremendous opportunity for service developers to publish their services and applications over the boundaries of the organization or company. However, to fully exploit these opportunities it is necessary to find efficient discovery mechanism thus, Web services discovering mechanism has attracted a considerable attention in Semantic Web research, however, there have been no literature surveys that systematically map the present research result thus overall impact of these research efforts and level of maturity of their results are still unclear. This thesis aims at providing an overview of the current state of research into Web services discovering mechanism using systematic mapping. The work is based on the papers published 2004 to 2013, and attempts to elaborate various aspects of the analyzed literature including classifying them in terms of the architecture, frameworks and methods used for web services discovery mechanism. Objective: The objective if this work is to summarize the current knowledge that is available as regards to Web service discovery mechanisms as well as to systematically identify and analyze the current published research works in order to identify different approaches presented. Method: A systematic mapping study has been employed to assess the various Web Services discovery approaches presented in the literature. Systematic mapping studies are useful for categorizing and summarizing the level of maturity research area. Results: The result indicates that there are numerous approaches that are consistently being researched and published in this field. In terms of where these researches are published, conferences are major contributing publishing arena as 48% of the selected papers were conference published papers illustrating the level of maturity of the research topic. Additionally selected 52 papers are categorized into two broad segments namely functional and non-functional based approaches taking into consideration architectural aspects and information retrieval approaches, semantic matching, syntactic matching, behavior based matching as well as QOS and other constraints.
Resumo:
Mechanisms underlying risk associated with hypertensive heart disease (HHD) and left ventricular hypertrophy (LVH) are discussed in this report and provide a rationale for understanding this very common and important cause of death from hypertension and its complications. Emphasized are impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis from increased collagen deposition intramurally and perivascularly. Each is exacerbated by aging and, perhaps, also by increased dietary salt intake. These functional and structural changes promote further endothelial dysfunction, altered coronary hemodynamics, and diastolic as well as systolic ventricular contractile function in HHD. The clinical endpoints of HHD include angina pectoris (with or without atherosclerosis of the epicardial coronary arteries), myocardial infarction, cardiac failure, lethal dysrhythmias, and sudden death. The major concept to be derived from these alterations is that not all that is clinically recognized as LVH is true myocytic hypertrophy and structural remodeling. Other major co-morbid changes occur that serve to increase cardiovascular risk including impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis.
Resumo:
Potential impacts of electrical capacity market design on capacity mobility and end use customer pricing are analyzed. Market rules and historical evolution are summarized to provide a background for the analysis. The summarized rules are then examined for impacts on capacity mobility. A summary of the aspects of successful capacity markets is provided. Two United States market regions are chosen for analysis based upon their market history and proximity to each other. The MISO region is chosen due to recent developments in capacity market mechanisms. The PJM region neighbors the MISO region and is similar in size and makeup. The PJM region has had a capacity market mechanism for over a decade and allows for a controlled comparison of the MISO region’s developments. Capacity rules are found to have an impact on the mobility of capacity between regions. Regulatory restrictions and financial penalties for the movement of capacity between regions are found which effectively hinder such mobility. Capacity market evolution timelines are formed from the historical evolution previously summarized and compared to historical pricing to inspect for a correlation. No direct and immediate impact on end use customer pricing was found due to capacity market design. The components of end use customer pricing are briefly examined.
Resumo:
Multicellular host responses to infection, injury or inflammatory stimuli lead to the formation of a broad range of chemical mediators by the host. The integrated response of the host is essential to health and disease; thus it is important to achieve a more complete understanding of the molecular and cellular events governing the formation and actions of endogenous mediators of resolution that appear to control the duration of inflammation. Lipoxins are trihydroxytetraene-containing lipid mediators that can be formed during cell-cell interactions and are predominantly counterregulators of some well-known mediators of inflammation. Since this circuit of lipoxin formation and action appears to be of physiological relevance for the resolution of inflammation, therapeutic modalities targeted at this system are likely to have fewer unwanted side effects than other candidates and current anti-inflammatory therapies. Here, we present an overview of the recent knowledge about the biosynthesis and bioactions of these anti-inflammatory lipid mediators.
Resumo:
Preeclampsia is the main cause of maternal mortality and is associated with a five-fold increase in perinatal mortality in developing countries. In spite of this, the etiology of preeclampsia is unknown. The present article analyzes the contradictory results of the use of calcium supplementation in the prevention of preeclampsia, and tries to give an explanation of these results. The proposal of an integrative model to explain the clinical manifestations of preeclampsia is discussed. In this proposal we suggest that preeclampsia is caused by nutritional, environmental and genetic factors that lead to the creation of an imbalance between the free radicals nitric oxide, superoxide and peroxynitrate in the vascular endothelium. The adequate interpretation of this model would allow us to understand that the best way of preventing preeclampsia is the establishment of an adequate prenatal control system involving adequate antioxidant vitamin and mineral supplementation, adequate diagnosis and early treatment of asymptomatic urinary and vaginal infections. The role of infection in the genesis of preeclampsia needs to be studied in depth because it may involve a fundamental change in the prevention and treatment of preeclampsia.
Resumo:
Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD). This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL) and to increases in high density lipoproteins (HDL). Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc.) in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.
Resumo:
We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.
Resumo:
The corpus callosum is a large fiber tract that connects neurons in the right and left cerebral hemispheres. Agenesis of the corpus callosum (ACC) is associated with a large number of human syndromes but little is known about why ACC occurs. In most cases of ACC, callosal axons are able to grow toward the midline but are unable to cross it, continuing to grow into large swirls of axons known as Probst bundles. This phenotype suggests that in some cases ACC may be due to defects in axonal guidance at the midline. General guidance mechanisms that influence the development of axons include chemoattraction and chemorepulsion, presented by either membrane-bound or diffusible molecules. These molecules are not only expressed by the final target but by intermediate targets along the pathway, and by pioneering axons that act as guides for later arriving axons. Midline glial populations are important intermediate targets for commissural axons in the spinal cord and brain, including the corpus callosum. The role of midline glial populations and pioneering axons in the formation of the corpus callosum are discussed. Finally the differential guidance of the ipsilaterally projecting perforating pathway and the contralaterally projecting corpus callosum is addressed. Development of the corpus callosum involves the coordination of a number of different guidance mechanisms and the probable involvement of a large number of molecules.
Resumo:
Työn tarkoitus oli tutkia eläinrasvan puhdistusta biodieselin valmistusta varten. Eläinrasvaa syntyy elintarviketeollisuuden sivutuotteena ja sitä saadaan myös myymättä jääneistä elintarvikkeista. Rasva sisältää epäpuhtauksia, jotka on poistettava ennen biodieselprosessia. Tässä työssä tutkittavat epäpuhtaudet ovat typpi, fosfori, rauta, natrium, kalsium ja magnesium. Puhdistusmenetelminä käytettiin saostamista sitruunahapolla sekä adsorbointia kahdella eri adsorbentilla. Tavoitteena oli selvittää riittävä määrä happoa ja adsorbenttia sekä tutkia puhdistuksen mekanismia. Lisäksi tarkasteltiin lämpötilan vaikutusta adsorption aikana.
Resumo:
Sexual dimorphism is commonly understood as differences in external features, such as morphological features or coloration. However, it can more broadly encompass behavior and physiology and at the core of these differences is the genetic mechanism – mRNA and protein expression. How, and which, molecular mechanisms influence sexually dimorphic features is not well understood thus far. DNA, RNA and proteins are the template required to create the phenotype of an individual, and they are connected to each other via processes of transcription and translation. As the genome of males and females are almost identical with the exception of the few genes on the sex chromosome or the sex-determining alleles (in the case of organisms without sex chromosomes), it is likely that many of the downstream processes resulting in sexual dimorphism are produced by changes in gene regulation and result from a regulatory cascade and not from a vastly different gene composition. Thus, in this thesis a systems biology approach is used to understand sexual dimorphism at all molecular levels and how different genomic features, e.g. sex chromosome evolution, can affect the interplay of these molecules. The threespine stickleback, Gasterosteus aculeatus, is used as the model to investigate molecular mechanisms of sexual dimorphism. It has well-characterized ecology and behavior, especially in the breeding season when sexual dimorphism is high. Moreover, threespine stickleback has a recently evolved Y chromosome in the early stages of sex chromosome evolution, characterized by a lack of recombination leading to degeneration (i.e. gene loss). The aim of my thesis is to investigate how the genotype links to the molecular phenotype and relates to differences in molecular expression between males and females. Based on previous research on sex differences in mRNA expression, I investigated sex-biased protein expression in adult fish outside the breeding season to see if differences persisted after translation. As sex-biased expression also prevailed in the proteome and previous transcription expression seemed to be related to the sex chromosomes, I investigated the genome level with a particular focus on the sex-chromosomes. I characterized the status of Y chromosome degeneration in the threespine stickleback and its effects on gene function. Furthermore, since the degeneration process leaves genes in a single copy in males, I examined whether the resulting dosage difference of messenger RNA for hemizygous genes is compensated as it is in other organisms. In addition, threespine sticklebacks have wellcharacterized behavioral differences related to the male’s social status during the breeding season. To understand the connection between the genotype and behavior, I examined gene expression patterns related to breeding behavior using dominant and subordinate males as well as female