971 resultados para spore diameter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The purpose of this article was to present methods capable of estimating the size and shape of the human eye lens without resorting to phakometry or magnetic resonance imaging (MRI). Methods. Previously published biometry and phakometry data of 66 emmetropic eyes of 66 subjects (age range [18, 63] years, spherical equivalent range [−0.75, +0.75] D) were used to define multiple linear regressions for the radii of curvature and thickness of the lens, from which the lens refractive index could be derived. MRI biometry was also available for a subset of 30 subjects, from which regressions could be determined for the vertex radii of curvature, conic constants, equatorial diameter, volume, and surface area. All regressions were compared with the phakometry and MRI data; the radii of curvature regressions were also compared with a method proposed by Bennett and Royston et al. Results. The regressions were in good agreement with the original measurements. This was especially the case for the regressions of lens thickness, volume, and surface area, which each had an R2 > 0.6. The regression for the posterior radius of curvature had an R2 < 0.2, making this regression unreliable. For all other regressions we found 0.25 < R2 < 0.6. The Bennett-Royston method also produced a good estimation of the radii of curvature, provided its parameters were adjusted appropriately. Conclusions. The regressions presented in this article offer a valuable alternative in case no measured lens biometry values are available; however care must be taken for possible outliers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface chemistries of three particulate samples collected from the lower stratosphere have been determined using a Scanning Auger Microprobe (SAM). These samples are typical of the most abundant natural and anthropogenic particles observed within the stratosphere in the >2µm diameter size fraction. Successive sputtering and analysis below the first few adsorbed monolayers of all particles shows the presence of a thin <150A) sulphur layer. These sulphur regions probably formed by surface reaction of sulphur-rich aerosols with each particle within the stratosphere. Settling rate calculations show that a typical sphere (10µm diameter) may reside within the aerosol layer for ~20 days and thus, provide a qualitative guide to surface sulphur reaction rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric ultrafine particles play an important role in affecting human health, altering climate and degrading visibility. Numerous studies have been conducted to better understand the formation process of these particles, including field measurements, laboratory chamber studies and mathematical modeling approaches. Field studies on new particle formation found that formation processes were significantly affected by atmospheric conditions, such as the availability of particle precursors and meteorological conditions. However, those studies were mainly carried out in rural areas of the northern hemisphere and information on new particle formation in urban areas, especially those in subtropical regions, is limited. In general, subtropical regions display a higher level of solar radiation, along with stronger photochemical reactivity, than those regions investigated in previous studies. However, based on the results of these studies, the mechanisms involved in the new particle formation process remain unclear, particularly in the Southern Hemisphere. Therefore, in order to fill this gap in knowledge, a new particle formation study was conducted in a subtropical urban area in the Southern Hemisphere during 2009, which measured particle size distribution in different locations in Brisbane, Australia. Characterisation of nucleation events was conducted at the campus building of the Queensland University of Technology (QUT), located in an urban area of Brisbane. Overall, the annual average number concentrations of ultrafine, Aitken and nucleation mode particles were found to be 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. This was comparable to levels measured in urban areas of northern Europe, but lower than those from polluted urban areas such as the Yangtze River Delta, China and Huelva and Santa Cruz de Tenerife, Spain. Average particle number concentration (PNC) in the Brisbane region did not show significant seasonal variation, however a relatively large variation was observed during the warmer season. Diurnal variation of Aitken and nucleation mode particles displayed different patterns, which suggested that direct vehicle exhaust emissions were a major contributor of Aitken mode particles, while nucleation mode particles originated from vehicle exhaust emissions in the morning and photochemical production at around noon. A total of 65 nucleation events were observed during 2009, in which 40 events were classified as nucleation growth events and the remainder were nucleation burst events. An interesting observation in this study was that all nucleation growth events were associated with vehicle exhaust emission plumes, while the nucleation burst events were associated with industrial emission plumes from an industrial area. The average particle growth rate for nucleation events was found to be 4.6 nm hr-1 (ranging from 1.79-7.78 nm hr-1), which is comparable to other urban studies conducted in the United States, while monthly particle growth rates were found to be positively related to monthly solar radiation (r = 0.76, p <0.05). The particle growth rate values reported in this work are the first of their kind to be reported for the subtropical urban area of Australia. Furthermore, the influence of nucleation events on PNC within the urban airshed was also investigated. PNC was simultaneously measured at urban (QUT), roadside (Woolloongabba) and semi-urban (Rocklea) sites in Brisbane during 2009. Total PNC at these sites was found to be significantly affected by regional nucleation events. The relative fractions of PNC to total daily PNC observed at QUT, Woolloongabba and Rocklea were found to be 12%, 9% and 14%, respectively, during regional nucleation events. These values were higher than those observed as a result of vehicle exhaust emissions during weekday mornings, which ranged from 5.1-5.5% at QUT and Woolloongabba. In addition, PNC in the semi-urban area of Rocklea increased by a factor of 15.4 when it was upwind from urban pollution sources under the influence of nucleation burst events. Finally, we investigated the influence of sulfuric acid on new particle formation in the study region. A H2SO4 proxy was calculated by using [SO2], solar radiation and particle condensation sink data to represent the new particle production strength for the urban, roadside and semi-urban areas of Brisbane during the period June-July of 2009. The temporal variations of the H2SO4 proxies and the nucleation mode particle concentration were found to be in phase during nucleation events in the urban and roadside areas. In contrast, the peak of proxy concentration occurred 1-2 hr prior to the observed peak in nucleation mode particle concentration at the downwind semi-urban area of Brisbane. A moderate to strong linear relationship was found between the proxy and the freshly formed particles, with r2 values of 0.26-0.77 during the nucleation events. In addition, the log[H2SO4 proxy] required to produce new particles was found to be ~1.0 ppb Wm-2 s and below 0.5 ppb Wm-2 s for the urban and semi-urban areas, respectively. The particle growth rates were similar during nucleation events at the three study locations, with an average value of 2.7 ± 0.5 nm hr-1. This result suggested that a similar nucleation mechanism dominated in the study region, which was strongly related to sulphuric acid concentration, however the relationship between the proxy and PNC was poor in the semi-urban area of Rocklea. This can be explained by the fact that the nucleation process was initiated upwind of the site and the resultant particles were transported via the wind to Rocklea. This explanation is also supported by the higher geometric mean diameter value observed for particles during the nucleation event and the time lag relationship between the H2SO4 proxy and PNC observed at Rocklea. In summary, particle size distribution was continuously measured in a subtropical urban area of southern hemisphere during 2009, the findings from which formed the first particle size distribution dataset in the study region. The characteristics of nucleation events in the Brisbane region were quantified and the properties of the nucleation growth and burst events are discussed in detail using a case studies approach. To further investigate the influence of nucleation events on PNC in the study region, PNC was simultaneously measured at three locations to examine the spatial variation of PNC during the regional nucleation events. In addition, the impact of upwind urban pollution on the downwind semi-urban area was quantified during these nucleation events. Sulphuric acid was found to be an important factor influencing new particle formation in the urban and roadside areas of the study region, however, a direct relationship with nucleation events at the semi-urban site was not observed. This study provided an overview of new particle formation in the Brisbane region, and its influence on PNC in the surrounding area. The findings of this work are the first of their kind for an urban area in the southern hemisphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube membranes have been fabricated and characterized and the corresponding gas permeability and hydrogen separation were measured. The carbon nanotube diameter and areal density were adjusted by varying the catalyst vapour concentration (Fe/C ratio) in the mixed precursor. The permeances are one to two magnitudes higher than the Knudsen prediction, while the gas selectivities are still in the Knudsen range. The diameter and areal density effects were studied and compared, the temperature dependence of permeation is also discussed. The results confirm the existence of non-Knudsen transport and that surface adsorption diffusion may affect the total permeance at relative low temperature. The permeance of aligned carbon nanotube membranes can be improved by increasing areal density and operating at an optimum temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana is one of the world’s most popular fruit crops and Sukali Ndizi is the most popular dessert banana in the East African region. Like other banana cultivars, Sukali Ndizi is threatened by several constraints, of which the Fusarium wilt disease is the most destructive. Fusarium wilt is caused by a soil-borne fungus, Fusarium oxysporum f.sp. cubense (Foc). No effective control strategy currently exists for this disease and although disease resistance exists in some banana cultivars, introducing resistance into commercial cultivars by conventional breeding is difficult because of low fertility. Considering that conventional breeding generates hybrids with additional undesirable traits, transformation is the most suitable way of introducing resistance in the banana genome. The success of this strategy depends on the availability of genes for genetic transformation. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi, including Foc race 1 in banana cultivar Lady Finger. This thesis explores the potential of a plant-codon optimised nematode anti-apoptosis gene (Mced9) to provide resistance against Foc race 1 in dessert banana cultivar Sukali Ndizi. Agrobacterium-mediated transformation was used to transform embryogenic cell suspension of Sukali Ndizi with plant expression vector pYC11, harbouring maize ubiquitin promoter driven Mced9 gene and nptII as a plant selection marker. A total of 42 independently transformed lines were regenerated and characterized. The transgenic lines were multiplied, infected and evaluated for resistance to Foc race 1 in a small pot bioassay. The pathogenicity of the Ugandan Foc race 1 isolate used for infection was pre-determined and the spore concentration was standardised for consistent infection and symptom development. This process involved challenging tissue culture plants of Sukali Ndizi, a Foc race 1 susceptible cultivar and Nakinyika, an East African Highland cultivar known to be resistant to Foc race 1, with Fusarium inoculum and observing external and internal disease symptom development. Rhizome discolouration symptoms were the best indicators of Fusarium wilt with yellowing being an early sign of disease. Three transgenic lines were found to show significantly less disease severities compared to the wild-type control plants after 13 weeks of infection, indicating that Mced9 has the potential to provide tolerance to Fusarium wilt in Sukali Ndizi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.