984 resultados para southern Yellow Sea


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern depositional environment of the deep Norwegian-Greenland Sea is highly asymmetric in an E-W direction because of the hydrography of the surface water masses and because of the more or less permanent pack ice cover of the East Greenland Current regime along the Greenland continental margin. By means of sedimentation rates we have tried to investigate whether this hydrographic asymmetry influenced the sediment input to the Norwegian-Greenland Sea over the past 60 m.y. Sediment input can be quantified if thicknesses of sediment sections accumulated over known time intervals can be measured and if some of their physical properties have been determined. Sedimentation rates have been estimated for Tertiary and Quaternary times, and their temporal as well as their spatial changes are discussed. Basin structure and morphology exerted an important influence on sediment distribution. During the Early Tertiary major sediment source regions in the southern Barents Sea and to the north and west of Iceland could be identified; these source regions supplied the bulk of the sediment fill of the Norwegian-Greenland Sea. Since inception of a "glacial" type sedimentation major elements of the sea surface circulation seem to have controlled the sediment input into this polar and subpolar deep-sea basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The equator to high southern latitude sea surface and vertical temperature gradients are reconstructed from oxygen isotope values of planktonic and benthic foraminifers for the following five time intervals: late Paleocene, early Eocene, early middle Eocene, late Eocene, and early Oligocene. Paleotemperatures are calculated using standard oxygen isotope/temperature equations with adjustments to account for (1) variations in sea water delta18O related to changes in global ice volume over time and (2) latitudinal gradients in surface water delta18O. These reconstructions indicate that sea-surface temperatures (SST) of the Southern Oceans in the early Eocene were as high as 15°C, whereas temperatures during the late Paleocene and early middle Eocene reached maximum levels of 10°-12°C. By the late Eocene and early Oligocene high latitude SST had declined to 6 and 4°C, respectively. For most of the early Paleogene, low latitude sub-tropical temperatures remained constant and well within the range of Holocene temperatures (24°-25°C) but by the late Eocene and early Oligocene declined to values in the range of 18° to 22°C. The late Paleogene apparent decline in tropical temperatures, however, might be artificial because of dissolution of near-surface foraminifera tests which biased sediment assemblages toward deeper-dwelling foraminifera. Moreover, according to recent plate reconstructions, it appears that the majority of sites upon which the late Eocene and early Oligocene tropical temperatures were previously established were located either in or near regions likely to have been influenced by upwelling. Global deepwater temperature on average paralleled southern ocean SST for most of the Paleogene. We speculate based on the overall timing and character of marine sea surface temperature variation during the Paleogene that some combination of both higher levels of greenhouse gases and increased heat transport was responsible for the exceptional high-latitude warmth of the early Eocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Up to the end of the eighties the main source of deep water masses in the Ionian Basin was the southern Adriatic Sea. However, during the nineties a dramatic climatic change took place in the eastern Mediterranean Sea: the Eastern Mediterranean Transient (EMT). Since then, deep water has been formed by waters originating in the Aegean Sea. Expeditions carried out in this region in recent years indicate that the process of deep water formation might reverse again. To what extent this assumption applies and what characteristics the deep water in the Ionian Sea exhibit nowadays, should be determined on the cruise. The process of a re-reversal of abyssal water production in the Ionian Sea is a long-term process and must therfore be monitored for several years. Hence, this cruise is part of a series of cruises investigating this question (POS98, M71/3, MSM13/1-2, MSM15/4). The investigations were carried out by means of CTD/lADCP measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laminated sediments deposited under anoxic bottom waters in the Japan Sea during the last glacial maximum (LGM) contain extremely well preserved calcareous microfossils and eolian carbonates. The radiocarbon age-difference between bulk sediment and monospecific planktonic foraminifera in discrete laminae from a core in the southern Japan Sea implies that ~40% of the total carbonates in the sediments at the LGM are of eolian origin. Extrapolation of this result yields a rate of supply of eolian carbonates of ~2800 tons/d to the entire Japan Sea during the LGM. The climatic significance of this flux potentially lies in its broader geographic extension, particularly in the interaction of the carbonate-bearing dust with shallow, corrosive North Pacific waters and with rain in the atmosphere. By increasing the alkalinity of such waters and by enhancing the biological pump the dust flux could have increased CO2 absorption by both the ocean and rain during the LGM.