986 resultados para song structure
Resumo:
Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.
Resumo:
There are two recognized forms of the disease net blotch of barley: the net form caused by Pyrenophora teres f. teres (PTT) and the spot form caused by P. teres f. maculata (PTM). In this study, amplified fragment length polymorphism analysis was used to investigate the genetic diversity and population structure of 60 PTT and 64 PTM isolates collected across Australia (66 isolates) and in the south-western Cape of South Africa (58 isolates). For comparison, P. tritici-repentis, Exserohilum rostratum and Bipolaris sorokiniana samples were also included in the analyses. Both distance-and model-based cluster analyses separated the PTT and PTM isolates into two strongly divergent genetic groups. Significant variation was observed both among the South African and Australian populations of PTT and PTM and among sampling locations for the PTT samples. Results suggest that sexual reproduction between the two forms is unlikely and that reproduction within the PTT and PTM groups occurs mainly asexually.
Resumo:
Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.
Resumo:
NMR studies of methyldichlorophosphine have been undertaken in the nematic phase of mixed liquid crystals of opposite diamagnetic anisotropies. The rα structure is derived. The proton chemical-shift anisotropy has been determined from the studies without the use of a reference compound and without a change of experimental conditions. It is shown that the molecule orients in the liquid crystal with positive diamagnetic anisotropy in such a way that the C3 symmetry axis of the CH3P moiety is preferentially aligned perpendicular to the direction of the magnetic field, unlike other similar systems. This is interpreted in terms of the formation of a weak solvent-solute molecular complex. The heteronuclear indirect spin-spin coupling constants are determined. The sign of the two-bond JPH is found to be positive.
Resumo:
Abstract is not available.
Resumo:
C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.
Resumo:
Is it possible for Indigenous ways of knowing, which draw on earth song and storywork, to find a place within the academy? Indigenous peoples recognise that the earth has a song, which we can listen to as story. In return, we can sing our story to the world and of the world. In this paper, the authors explore their own stories and songs. They explain the ways that listening to the earth’s song and working with stories can inform their work in the academy – as teachers who support younglings to hear their voices and develop their own songs, and as the writers and tellers of curriculum. The authors ask whether it is possible for Indigenous academics to combine their academic work with Indigenous ways of knowing. They argue that, not only is the combination possible, it can be used to create a harmonious voice that will help them to reclaim their power as Indigenous academic women.
Resumo:
We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
In order to investigate the effect of long term recurrent selection on the pattern of gene diversity, thirty randomly-selected individuals from the progenitors (p) and four selection cycles (C0, C3, C6 and C11) were sampled for DNA analysis from the tropical maize (Zea mays L.) breeding populations, Atherton 1 (AT1) and Atherton 2 (AT2). Fifteen polymorphic Simple Sequence Repeat markers amplified a total of 284 and 257 alleles in AT1 and AT2 populations, respectively. Reductions in the number of alleles were observed at advanced selection cycles. About 11 and 12% of the alleles in AT1 and AT2 populations respectively, were near to fixation. However, a higher number of alleles (37% in AT1 and 33% in AT2) were close to extinction. Fisher's exact test and analysis of molecular variance (AMOVA) showed significant population differentiations. Gene diversity estimates and AMOVA revealed increased genetic differentiations at the expense of loss of heterozygosity. Population differentiations were mainly due to fixation of complementary alleles at a locus in the two breeding populations. The estimates of effective population at an advanced selection cycle were close to the population size predicted by the breeding method.
Resumo:
The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"
Resumo:
The tetrapeptide t-butyloxycarbonyl--aminoisobutyryl--aminoisobutyryl-L- phenylalanyl-L-methionyl amide crystallizes in the orthorhombic space group P212121 with a= 9.096, b= 18.067, c= 21.701 Å and Z= 4. The crystals contain one molecule of dimethyl sulphoxide (DMSO) associated with each peptide. The structure has been solved by direct methods and refined to an R value of 0.103 for 2 672 observed reflections. The peptide adopts a distorted 310 helical structure stabilized by two intramolecular 4 1 hydrogen bonds between the Boc CO and Aib(1) CO groups and the NH groups of Phe(3) and Met(4), respectively. A long hydrogen bond (N O = 3.35 Å) is also observed between Aib(2) CO and one of the terminal amide hydrogens. The DMSO molecule is strongly hydrogen bonded to the Aib(1) NH group. The solid-state conformation agrees well with proposals made on the basis of n.m.r. studies in solution.