992 resultados para soil chemicophysical properties
Resumo:
The abandonment of agricultural land in mountainous areas has been an outstanding problem along the last century and has captured the attention of scientists, technicians and administrations, for the dramatic consequences sometimes occurred due to soil instability, steep slopes, rainfall regimes and wildfires. Hidromorfological and pedological alterations causing exceptional floods and accelerated erosion processes has therefore been studied, identifying the cause in the loss of landscape heterogeneity. Through the disappearance of agricultural works and drainage maintenance, slope stability has resulted severely affected. The mechanization of agriculture has caused the displacement of vines, olives and corks trees cultivation in terraced areas along the Mediterranean catchment towards more economically suitable areas. On the one hand, land use and management changes have implicated sociological changes as well, transforming areas inhabited by agricultural communities into deserted areas where the colonization of disorganized spontaneous vegetation has buried a valuable rural patrimony. On the other hand, lacking of planning and management of the abandoned areas has produced badlands and infertile soils due to wildfire and high erosion rates strongly degrading the whole ecosystems. In other cases, after land abandonment a process of soil regeneration has been recorded. Investigations have been conducted in a part of NE Spain where extended areas of terraced soils previously cultivated have been abandoned in the last century. The selected environments were semi-abandoned vineyards, semi-abandoned olive groves, abandoned stands of cork trees, abandoned stands of pine trees, scrubland of Cistaceaea, scrubland of Ericaceaea, and pasture. The research work was focused on the study of most relevant physical, chemical and biological soil properties, as well as runoff and erosion under soils with different plant cover to establish the abandonment effect on soil quality, due to the peculiarity and vulnerability of these soils with a much reduced depth. The period of observation was carried out from autumn 2009 to autumn 2010. The sediment concentration of soil erosion under vines was recorded as 34.52 g/l while under pasture it was 4.66 g/l. In addition, the soil under vines showed the least amount of organic matter, which was 12 times lower than all other soil environments. The carbon dioxide (CO2) and total glomalin (TG) ratio to soil organic carbon (SOC) in this soil was 0.11 and 0.31 respectively. However, the soil under pasture contained a higher amount of organic matter and showed that the CO2 and TG ratio to SOC was 0.02 and 0.11 respectively indicating that the soil under pasture better preserves the soil carbon pool. A similar trend was found in the intermediate soils in the sequence of land use change and abandonment. Soil structural stability increased in the two soil fractions investigated (0.25-2.00 mm, 2.0-5.6 mm) especially in those soils that did not undergo periodical perturbations like wildfires. Soil quality indexes were obtained by using relevant physical and chemical soil parameters. Factor analysis carried out to study the relationship between all soil parameters allowed to related variables and environments and identify those areas that better contribute to soil quality towards others that may need more attention to avoid further degradation processes
Resumo:
The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.
Resumo:
The study aimed to evaluate chemical, microbiological and hydro-physical changes of a Dystrophic Yellow Latosol, receiver of different levels of manipueira (cassava wastewater) application, in the cultivation of 'Terra Maranhão' banana. The experimental design was a randomized block with three replications in a factorial scheme 3 x 4, in which it was considered three soil depths and four levels of manipueira. It was evaluated the weighted mean diameter of the aggregate, the percentage of aggregation at different periods, soil density, particle density, porosity and soil saturated hydraulic conductivity, in addition to pH of P (mg dm -3), K (mg dm-3), Ca (cmolc dm-3), Mg (cmolc dm-3), Ca+Mg (cmolc dm-3), Al (cmolc dm-3), Na (cmolc dm -3), H+Al (cmolc dm-3), CEC (cmolc dm-3), V%, OM (g kg-1), soil microbial biomass (Ug Cg-1 dry soil), acid phosphatase (Ug PNP g-1 h-1). The use of manipueira influenced some physical characteristic of the soil, but it was not possible to specify the effect of increasing application dosage. Therefore, the application did not affect the biological indicators assessed in the soil or its pH. The use of manipueira as a fertilizer in the doses used in this study showed low increase of K, P, H+Al and Al in the soil and a good increase of Mg, Ca and Ca+Mg, Na, CEC and V%.
Resumo:
The objective of this study was to evaluate the effects of the nitrogen fertilization in the form of swine deep bed in the properties of a quartz-sand neosol. The organic compound used was the deep bed made with rice hulls, from a commercial swine finishing system farm. Deep bed samples have been collected at various points in the installation in order to obtain a representative composite sample which has been fractionated in a 2.0 mm sieve and submitted to a 50-day maturation period. Then, agronomic value analyses were done. The experimental design was completely randomized. The treatments consisted of 0; 75; 150 and 300 mg dm-3 of N doses of deep bed as well as an additional treatment with ammonium sulfate at a 150 mg dm-3 of N. The experimental period in the greenhouse was 45 days, where the soil was cultivated with maize. After the experiment completion, further soil properties analyses were done. From the results, it was noted that the organic fertilization with deep bed provided a significant increase in the levels of potassium, in the sum of the bases, in the effective CEC, in the CEC at pH 7.0 and in the percentage of saturation.
Resumo:
The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.
Resumo:
Several equipments and methodologies have been developed to make available precision agriculture, especially considering the high cost of its implantation and sampling. An interesting possibility is to define management zones aim at dividing producing areas in smaller management zones that could be treated differently, serving as a source of recommendation and analysis. Thus, this trial used physical and chemical properties of soil and yield aiming at the generation of management zones in order to identify whether they can be used as recommendation and analysis. Management zones were generated by the Fuzzy C-Means algorithm and their evaluation was performed by calculating the reduction of variance and performing means tests. The division of the area into two management zones was considered appropriate for the present distinct averages of most soil properties and yield. The used methodology allowed the generation of management zones that can serve as source of recommendation and soil analysis; despite the relative efficiency has shown a reduced variance for all attributes in divisions in the three sub-regions, the ANOVA did not show significative differences among the management zones.
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Cover crops are important for improving soil quality. However, soil properties usually have some spatial dependence. Thus, this study aimed to evaluate the effect of winter cover crops on physical properties of soil and soybean yields using thematic maps. Five winter treatments were used: black oats; intercropping 1 (forage turnips and black oats); intercropping 2 (forage turnips, black oats and common vetch); wheat; and control. Macroporosity, microporosity, total porosity, bulk density and water content of the soil from 0 - 0.1 m depths were evaluated after the winter cover crop management. Soybeans were sown over the entire area in the summer after the winter cover crop management, and the soybean yield was determined for each treatment. Maps for each treatment were created and compared to the control treatment using the relative deviation coefficient (RDC). The cover crops improved the total macroporosity of the soil in some regions of the study area. The black oats were more efficient at maintaining higher water content of the soil, and it can be used to decrease the bulk density.
Resumo:
ABSTRACT The feasibility of using sewage wastewater as a water and nutrient source for plants is an alternative to harness agricultural natural resource, observing its influence on the organic matter dynamics and soil energy. Our objective here was to evaluate the effects of applying different doses of effluent from a sewage treatment plant, in Janaúba – MG, Brazil, over the physical attributes of a soil grown with “Prata Anã” banana. From soil sample collection at depths of 0-20, 20-40, and 40-60 cm, we determined the following soil properties: soil density, total porosity, macroporosity, microporosity, organic matter, clay dispersed in water and stability of soil aggregate. The experimental design was in randomized blocks with four repetitions. Wastewater raising doses promoted increase in suspended solids, contributing to macroporosity reduction at 20-40 and 40-60 cm depths; as well as a reduction in organic matter within 0-20 cm layer. Clay dispersal was observed in the depths of 0-20 cm, being derived from an increase in sodium content. Concurrently, there was a reduction of soil aggregate stability.
Resumo:
Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.
Resumo:
The major focus of this dissertation was to explain terroir effects that impact wine varietal character and to elucidate potential determinants of terroir by testing vine water status (VWS) as the major factor of the terroir effect. It was hypothesized that consistent water status zones could be identified within vineyard sites, and, that differences in vine performance, fruit composition and wine sensory attributes could be related to VWS. To test this hypothesis, ten commercial Riesling vineyards representative of each Vintners Quality Alliance sub-appellation were selected. Vineyards were delineated using global positioning systems and 75 to 80 sentinel vines per vineyard were geo-referenced for data collection. During the 2005 to 2007 growing seasons, VWS measurements [midday leaf water potential ('l')] were collected from a subset of these sentinel vines. Data were collected on soil texture and composition, soil moisture, vine performance (yield components, vine size) and fruit composition. These variables were mapped using global information system (GIS) software and relationships between them were elucidated. Vines were categorized into "low" and "high" water status regions within each vineyard block and replicate wines were made from each. Many geospatial patterns and relationships were spatially and temporally stable within vineyards. Leaf'l' was temporally stable within vineyards despite different weather conditions during each growing season. Generally, spatial relationships between 'l', soil moisture, vine size, berry weight and yield were stable from year to year. Leaf", impacted fruit composition in several vineyards. Through sorting tasks and multidimensional scaling, wines of similar VWS had similar sensory properties. Descriptive analysis further indicated that VWS impacted wine sensory profiles, with similar attributes being different for wines from different water status zones. Vineyard designation had an effect on wine profiles, with certain sensory and chemical attributes being associated from different subappellations. However, wines were generally grouped in terms of their regional designation ('Lakeshore', 'Bench', 'Plains') within the Niagara Peninsula. Through multivariate analyses, specific sensory attributes, viticulture and chemical variables were associated with wines of different VWS. Vine water status was a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and wine sensory characteristics.
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
Researches are always in quest for finding innovative methods for ground improvement using sustainable and environmental friendly solutions. Theproduction of large quantity of biowastes all over the world faces serious problems of handling and disposal. Coir pith is a biowaste from coir industry and sugarcane baggase is another biowaste obtained after extractingjuice from sugar cane. So the present study is an investigation into the effect of coir pith and sugarcane baggase on some geotechnical properties of red earth. The investigation includes study on variation of properties such as O.M.C, maximum dry density, C.B.R. values,unconfined compressive strength and permeability when these materials are included in soil. Several conclusions are arrived at, on the basis of the experiments conducted and it may be helpful for predicting the behavior of such soil matrix
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination