945 resultados para single cell gel electhrophoresis
Resumo:
The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.
Resumo:
The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.
Resumo:
We have synthesized a recombinant gene encoding a single-chain HLA-A2/beta 2-microglobulin (beta 2m) molecule by linking beta 2m through its carboxyl terminus via a short peptide spacer to HLA-A2 (A*0201). This gene has been expressed in the beta 2m-deficient colorectal tumor cell line DLD-1. Transfection of this cell with the single-chain construct was associated with conformationally correct cell surface expression of a class I molecule of appropriate molecular mass. The single-chain HLA class I molecule presented either exogenously added peptide or (after interferon-gamma treatment) endogenously processed antigen to an influenza A matrix-specific, HLA-A2-restricted cytotoxic T-lymphocyte line. The need for interferon gamma for the processing and presentation of endogenous antigen suggests that DLD-1 has an antigen-processing defect that can be up-regulated, a feature that may be found in other carcinomas. Our data indicate that single-chain HLA class I constructs can form functional class I molecules capable of presenting endogenously processed antigens. Such molecules should be of use for functional studies, as well as providing potential anticancer immunotherapeutic agents or vaccines.
Resumo:
We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].
Resumo:
Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.
Resumo:
Macronuclei of the ciliated protozoan Tetrahymena thermophila possess a histone acetyltransferase activity closely associated with transcription-related histone acetylation. Nothing definitive is known concerning the polypeptide composition of this activity in Tetrahymena or any comparable activity from any cellular source. An acetyltransferase activity gel assay was developed which identifies a catalytically active subunit of this enzyme in Tetrahymena. This activity gel assay detects a single polypeptide of 55 kDa (p55) in crude macronuclear extracts, as well as in column-purified fractions, which incorporates [3H]acetate from [3H]acetyl-CoA into core histone substrates polymerized directly into SDS polyacrylamide gels. p55 copurifies precisely with acetyltransferase activity through all chromatographic steps examined, including reverse-phase HPLC. Gel-filtration chromatography of this activity indicates a molecular mass of 220 kDa, suggesting that the native enzyme may consist of four identical subunits of 55 kDa. Furthermore, p55 is tightly associated with di- and greater polynucleosomes and therefore may be defined as a component of histone acetyltransferase type A--i.e., chromatin associated.
Resumo:
Serial passaging of wild-type Helicoverpa armigera, single-nucleocapsid (HaSNPV) in H. zea (HzAMI) illsect Cell Cultures results ill rapid selection for the few polyhedra (FP) phenotype. A unique HaSNPV mutant (ppC19) was isolated through plaque purification that exhibited a partial many polyhedra (MP) and FP phenotype. Oil serial passaging in suspension cell cultures, ppC19 produced fivefold more polyhedra than a typical FP mutant (FP8AS) but threefold less polyhedra than the wild-type virus. Most importantly, the polyhedra of ppC19 exhibited MP-like virion occlusion. Furthermore, ppC19 produced the same amount of budded virus (BV) as the FP mutant, which was fivefold higher than that of the wild-type virus. This selective advantage was likely to explain its relative stability in polyhedra production for six passages when compared with the wild-type Virus. However, subsequent passaging of ppC19 resulted in a steel) decline in both BV and polyhedra yields, which was also experienced by FP8AS and the wild-type virus Lit high passage numbers. Genomic deoxyribonueleic Licid profiling of the latter suggested that defective interfering particles (DIPS) were implicated in this phenomenon and represented another Undesirable mutation during serial passaging of HaSNPV Hence, a strategy to isolate HaSNPV Clones that exhibited MP-like polyhedra production but FP-like BV production, coupled with low multiplicities of infection during scale-up to avoid accumulation of DIPS, could prove commerically invaluable.
Resumo:
Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.
Resumo:
The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.
Resumo:
International audience
Resumo:
In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.
Resumo:
In this paper it is proposed to obtain enhanced and more efficient parameters model from generalized five parameters (single diode) model of PV cells. The paper also introduces, describes and implements a seven parameter model for photovoltaic cell (PV cell) which includes two internal parameters and five external parameters. To obtain the model the mathematical equations and an equivalent circuit consisting of a photo generated current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to analyse and best fit the observation data. Especially bisection iteration method is used to obtain the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The produced model can be used of measuring and understanding the actions of photovoltaic cells for certain changes and parameters extraction. The effect is also studied with I-V and P-V characteristics of PV cells though it is a challenge to optimize the output with real time simulation. The working procedure is also discussed and an experiment presented to get the closure and insight about the produced model and to decide upon the model validity. At the end, we observed that the result of the simulation is very close to the produced model.