987 resultados para simple loop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for multivariable control was proposed in McFarlane and Glover (1988 CDC). This method involved shaping the open-loop singular values with pre and/or post compensators and then designing a controller to robustly stabilize a normalized coprime factorization of this weighted plant. The method has many attractive features including guaranteed loop shape and robust stability and performance. This talk will outline the rationale of this method and illustrate its use on a number of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the high-quality nonlinear pulse compression of gain-switched laser diode pulses using a two-cascade compression scheme are presented. The scheme incorporates a dispersive delay line and a nonlinear pulse compressor based on a dispersion-imbalanced fiber loop mirror (DILM). It is demonstrated that the DILM can be also used for the pulse compression with a compression ratio of 10 or higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear filtering of a 10Gb/s data stream in a dispersion-imbalanced fibre loop mirror has been demonstrated over a wide spectral range of 28nm. A relative extinction ratio of - 30 dB for the cw background has been achieved across the whole spectral range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper develops the basis for a self-consistent, operationally useful, reactive pollutant dispersion model, for application in urban environments. The model addresses the multi-scale nature of the physical and chemical processes and the interaction between the different scales. The methodology builds on existing techniques of source apportionment in pollutant dispersion and on reduction techniques of detailed chemical mechanisms. © 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of graphite which is easy to comprehend and simple to implement for the simulation of scanning tunneling microscopy (STM) images is described. This model simulates the atomic density of graphite layers, which in turn correlates with the local density of states. The mechanism and construction of such a model is explained with all the necessary details which have not been explicitly reported before. This model is applied to the investigation of rippling fringes which have been experimentally observed on a superlattice, and it is found that the rippling fringes are not related to the superlattice itself. A superlattice with abnormal topmost layers interaction is simulated, and the result affirms the validity of the moiré rotation pattern assumption. The "odd-even" transition along the atomic rows of a superlattice is simulated, and the simulation result shows that when there is more than one rotated layer at the top, the "odd-even" transition will not be manifest. ©2005 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D Direct Numerical Simulations (DNS) of autoignition in turbulent non-premixed flows between fuel and hotter air have been carried out using both 1-step and complex chemistry consisting of a 22 species n-heptane mechanism to investigate spontaneous ignition timing and location. The simple chemistry results showed that the previous findings from 2D DNS that ignition occurred at the most reactive mixture fraction (ξMR) and at small values of the conditional scalar dissipation rate (N|ξMR) are valid also for 3D turbulent mixing fields. Performing the same simulation many times with different realizations of the initial velocity field resulted in a very narrow statistical distribution of ignition delay time, consistent with a previous conjecture that the first appearance of ignition is correlated with the low-N content of the conditional probability density function of N. The simulations with complex chemistry for conditions outside the Negative Temperature Coefficient (NTC) regime show behaviour similar to the single-step chemistry simulations. However, in the NTC regime, the most reactive mixture fraction is very rich and ignition seems to occur at high values of scalar dissipation. Copyright © 2006 by ASME.