984 resultados para secondary metabolism
Resumo:
A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame - indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.
Resumo:
Prandtl's secondary mean motions of the second kind near an undulating surface were explained in terms of turbulent blocking effect and kinematic boundary conditions at the surface, and its order of magnitude was estimated. Isotropic turbulence is distorted by the undulating surface of wavelength λ and amplitude h with a low slope, so that h « λ. The prime mechanism for generating the mean flow is that the far-field Isotropic turbulence is distorted by the non-local blocking effect of the surface to become anisotropic axisymmetric turbulence near the surface with principal axis that is not aligned with the local curvature of the undulation. Then the local analysis can be applied and the mechanism is similar to the mean flow generation mechanism for homogeneous axisymmetric turbulence over a planer surface, i.e. gradients of the Reynolds stress caused by the turbulent blocking effect generate the mean motions. The results from this simple analysis are consistent with previous exact analysis in which the effects of curvature are strictly taken into account. The results also qualitatively agree with flow visualization over an undulating surface in a mixing-box.
Resumo:
This paper describes a new flow mechanism for the reduction of secondary flows in Low Pressure Turbines using the benefit of contoured endwalls. The extensive application of contoured endwalls in recent years has provided a deeper understanding of the physical phenomenon that governs the reduction of secondary flows. Based on this understanding, the endwall geometry of a linear cascade of solid-thin profiles typical of Low Pressure Turbines has been redesigned. Experimental data are presented for the validation of this new solution. Based on these data, a reduction of 72% in the SKEH and 20% in the mixed-out endwall losses can be obtained. CFD simulations are also presented to illustrate the effect of the new endwall on the secondary flows. Furthermore, an explanation of the flow mechanism that governs the reduction of the SKEH and the losses is given. Copyright © 2006 by ASME.
Resumo:
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Resumo:
Fringillidae is a large and diverse family of Passeriformes. So far, however, Fringillidae relationships deduced from morphological features and by a number of molecular approaches have remained unproven. Recently, much attention has been attracted to mitochondrial tRNA genes, whose sequence and secondary structural characteristics have shown to be useful for Acrodont Lizards and deep-branch phylogenetic studies. In order to identify useful phylogenetic markers and test Fringillidae relationships, we have sequenced three major clusters of mitochondrial tRNA genes from 15 Fringillidae, taxa. A coincident tree, with coturnix as outgroup, was obtained through Maximum-likelihood method using combined dataset of 11 mitochondrial tRNA gene sequences. The result was similar to that through Neighbor-joining but different from Maximum-parsimony methods. Phylogenetic trees constructed with stem-region sequences of 11 genes had many different topologies and lower confidence than with total sequences. On the other hand, some secondary structural characteristics may provide phylogenetic information on relatively short internal branches at under-genus level. In summary, our data indicate that mitochondrial tRNA genes can achieve high confidence on Fringillidae phylogeny at subfamily level, and stem-region sequences may be suitable only at above-family level. Secondary structural characteristics may also be useful to resolve phylogenetic relationship between different genera of Fringillidae with good performance.
Resumo:
Background: Many conserved secondary structures have been identified within conserved elements in the human genome, but only a small fraction of them are known to be functional RNAs. The evolutionary variations of these conserved secondary structures in h
Resumo:
The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in d
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Resumo:
Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondar
Resumo:
The present investigation was undertaken to establish a reference situation for future use, to identify temporal and spatial composition of macrofauna and estimate some ecological indices in the sub tidal waters along the Bushehr coastal waters in Persian Gulf. Six transects were selected including Genaveh, Farakeh, Shif, Bandargah, Rostami and Asalouyeh, at each transect 3 station were sampled in depths of zero, 5 and 10 metres. Sampling was seasonally carried out by a VAN VEEN grab 0.0225 m2, during summer 2008 until spring 2009. Samples were wet sieved immediately using 0.5 mm mesh size sieves and sediment retained in the sieve was preserved in 4% buffered formalin solution. Macrofauna specimen were separated from the sediments using decantation and elutriation methods, enumerated and identified up to the Genus level. Environmental factors such as temperature. pH, and salinity were recorded in field using sensitive probs and refractometer (for salinity) and also sediment samples were taken for TOM and grain size analysis in all the stations. 5611 specimens belonging to 66 genera were collected during the present study. Polychaetes were dominant both in terms of genus number (31) and relative abundance (74 % of total macrofaunal abundance). The other dominant groups were Artheropoda, (16.1%), Molusca (2.8%), Echinodermata (1.29%) and others including Nematoda, Nemertina, Echiura and Turbellaria (5.8%). Thirty one Genera belong of 27 families of polychaeta, one genus and family of Subphylum Chlicerata,19 genera belong to 14 families of Crustacea, 8 genera belong to 6 families of Molusca, were indentified in the studied region. 1 family (Polygordidae) and 3 genera (Flabeligera, Pilargis and Polygordius) of Polychaeta, 1 family (Nymphonidae) and genus (Nymphon) of Chelicerata, 1 Family (Nematoplanidae) and genus (Nematoplana) of Turbellaria, were identified for the first time in Persian Gulf area. The result indicated that macrofauna organism have strong relationship with the grain size characteristics of the sediments they inhabit. The most surface deposit feeder specimens such as Prionospio and Cossura were found in zero meters depth of Genaveh, Farakeh, Bandargah, Rostami and Asalouyeh stations with sandy substratum, however the most burrowing deposit feeder and scavenger specimens such as Capitella and Petaloproctus were collected in 5 and 10 meter depths of stations with silty–clay substratum. The annual mean abundance, Shanon- weiner diversity and evenness of macrofauna were estimated1152.73 N/ m² , 2.72 and 0.792 respectively .The annual average biomass and secondary production were computed 1.797 gDW m² and 3.594 gDW m² y-1 .The average of water temperature, salinity, pH and oxygen concentration were recorded between 16.37-36.05 °C, 38-42 g/l, 7.89-8.76 and 4.23-8.23 mg/l, respectively during this study in 6 studied region. Among of investigated stations Asalouyeh adjacent of effluent canal of Gas and petrochemical industry sewage and Farakeh regions adjacent the Helleh estuary had the lowets and the highest community indices. The average of diversity and density in 5 meters depth stations with moderate of sand, silt and clay were slightly more than 2 other depths stations, it seems that 5 meters stations are made a transition habitats between 2 sandy and clay habitats, that can be used by 2 groups of surface and borrowing deposit feeders. Based on the data provided in this survey, the temperature variation, sediment texture, TOM, type habitat and manmade factors of Gas and petrochemical industries have had the most effect on the macrofauna community structure in the studied region during sampling periods.
Resumo:
Sefid-Rood River Estuary (SRE) is the most important riverine ecosystem in the south Caspian Sea along the Iranian coast lines. The aim of this study was to examine spatial and temporal variability in Phytoplankton and Zooplankton abundance and diversity in SRE. Variability of Chlorophyll a and inorganic nutrient concentration were determined during a year (November 2004– October 2005) in five sampling stations. Primary and secondry production were determined during a year. Total chlorophyll a concentration during the investigation ranged between zero to 22.8 μgl-1 and the highest levels were consistently recorded during summer and the lowest during winter with a annual mean concentration 4.48 μgl-1. Nutrient concentration was seasonally related to river flow with annual mean concentration: NO2 0.05±0.2 mgl-1, NO3 1.13±0.57 mgl-1, NH4 0.51±0.66 mgl-1, total phosphate 0.13±0.1mgl-1 and SiO2 5.68±1.91 mgl-1. Bacillariophytes, Cyanophytes, Chlorophytes, Pyrophytes and Euglenophytes were the dominant phytoplankton groups in this shallow and turbid estuary. The diversity and abundance of phytoplankton had a seasonal pattern while Diatomas and Chrysophytes were dominant throughout the year but Cyanophytes observed only during the summer. Zooplankton community structure was dominated by copepods which 68% of the total zooplankton. In the winter and summer seasons two increased in the number of zooplankton community and usually toward the sea had occurred. Zooplankton also showed a significant spatial and temporal variation. The high turbidity and temperature prime characteristics of SRE seem to be determining factors acting directly on phytoplankton and zooplankton temporal variability and nutrient fluctuations. Everywhere in this estuary nutrients appeared to be in excess of algal requirement and did not influence a phytoplankton and zooplankton composition. Also there was a positive correlation between chlorophyll a and temperature and a negative one with DIN and TP. Primary production determined in this estuary by dark and light butter method and G.P.P. 38.27±34.12 mgcm-2h-1 and N,PP 201.6±289.9 mgcm-2d-1. secondry production determined 15/128 mgc/m3/year. Everywhere in this estuary nutrients appeared to be in excess to algal requirement and did not influence in Chl. a and primary production. The most important factor influence on Chl. a was water temperature.