972 resultados para sandy coastal environments
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
One hypothesis for the maintenance of genetic variation states that alternative genotypes are adapted to different environmental conditions (i.e., genotype-by-environment interaction GxE) that vary in space and time. Although GxE has been demonstrated for morphological traits, little evidence has been given whether these GxE are associated with traits used as signal in mate choice. In three wild bird species, we investigated whether the degree of melanin-based coloration, a heritable trait, covaries with nestling growth rate in rich and poor environments. Variation in the degree of reddish-brown phaeomelanism is pronounced in the barn owl (Tyto alba) and tawny owl (Strix aluco), and variation in black eumelanism in the barn owl and Alpine swift (Apus melba). Melanin-based coloration has been shown to be a criterion in mate choice in the barn owl. We cross-fostered hatchlings to test whether nestlings sired by parents displaying melanin-based colorations to different extent exhibit alternative growth trajectories when raised by foster parents in poor (experimentally enlarged broods) and rich (experimentally reduced broods) environments. With respect to phaeomelanism, barn owl and tawny owl offspring sired by redder parents grew more rapidly in body mass only in experimentally reduced broods. With respect to eumelanism, Alpine swift offspring of darker fathers grew their wings more rapidly only in experimentally enlarged broods, a difference that was not detected in reduced broods. These interactions between parental melanism and offspring growth rate indicate that individuals display substantial plasticity in response to the rearing environment which is associated with the degree of melanism: at least with respect to nestling growth, phaeomelanic and eumelanic individuals are best adapted to rich and poor environments, respectively. It now remains to be investigated why eumelanism and phaeomelanism have a different signaling function and what the lifelong consequences of these melanism-dependent allocation strategies are. This is important to fully appraise the role played by environmental heterogeneity in maintaining variation in the degree of melanin-based coloration.
Resumo:
The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.
Resumo:
This paper deals with non-linear transformations for improving the performance of an entropy-based voice activity detector (VAD). The idea to use a non-linear transformation has already been applied in the field of speech linear prediction, or linear predictive coding (LPC), based on source separation techniques, where a score function is added to classical equations in order to take into account the true distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if the signal is clean, the estimated entropy is essentially the same; if the signal is noisy, however, the frames transformed using the score function may give entropy that is different in voiced frames as compared to nonvoiced ones. Experimental evidence is given to show that this fact enables voice activity detection under high noise, where the simple entropy method fails.
Resumo:
Shoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.
Resumo:
We used high-resolution swath-bathymetry data to characterise the morphology of the abandoned subaqueous Sol de Riu delta lobe in the Ebro Delta, Western Mediterranean Sea. This study aims to assess the influence of an abandoned delta lobe on present-day coastal dynamics in a micro-tidal environment. Detailed mapping of the relict Sol de Riu lobe also showed a set of bedforms interpreted as footprints of human activities: seasonal V-shaped depressions on the middle shoreface due to boat anchoring and old trawling marks between 16 and 18 m water depth. Estimations of the mobility of bottom sediment showed that the shallowest shoreface (i.e. less than 7 m depth) is the most dynamic part of the relict lobe, while the middle shoreface experienced significant morphological changes since the lobe was abandoned. The deepest shoreface (i.e. water depth in excess of 15 m), which corresponds to the front of the lobe, is defined by a very small potential for morphological change. Simulations showed that while the relict lobe does not significantly affect the typical short period waves (Tp ≈4 s) in the study area, it does interfere with the most energetic wave conditions (Tp ≥ 7 s) acting as a shoal leading to the concentration of wave energy along the shoreline northwest of the lobe. The consequence of such modification of the high-energy wave propagation pattern by the relict lobe is an alteration of the wave-induced littoral sediment dynamics with respect to a situation without the lobe.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes an important seismic attenuation mechanism in porous rocks. As a consequence, centimetre-scale perturbations of the rock physical properties should be taken into account for seismic modelling whenever detailed and accurate responses of specific target structures are desired, which is, however, computationally prohibitive. A convenient way to circumvent this problem is to use an upscaling procedure to replace each of the heterogeneous porous media composing the geological model by corresponding equivalent visco-elastic solids and to solve the visco-elastic equations of motion for the inferred equivalent model. While the overall qualitative validity of this procedure is well established, there are as of yet no quantitative analyses regarding the equivalence of the seismograms resulting from the original poro-elastic and the corresponding upscaled visco-elastic models. To address this issue, we compare poro-elastic and visco-elastic solutions for a range of marine-type models of increasing complexity. We found that despite the identical dispersion and attenuation behaviour of the heterogeneous poro-elastic and the equivalent visco-elastic media, the seismograms may differ substantially due to diverging boundary conditions, where there exist additional options for the poro-elastic case. In particular, we observe that at the fluid/porous-solid interface, the poro- and visco-elastic seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an important result which has potentially far-reaching implications for wave-equation-based algorithms in exploration geophysics involving fluid/porous-solid interfaces, such as, for example, wavefield decomposition.
Resumo:
Two spatial tasks were designed to test specific properties of spatial representation in rats. In the first task, rats were trained to locate an escape hole at a fixed position in a visually homogeneous arena. This arena was connected with a periphery where a full view of the room environment existed. Therefore, rats were dependent on their memory trace of the previous position in the periphery to discriminate a position within the central region. Under these experimental conditions, the test animals showed a significant discrimination of the training position without a specific local view. In the second task, rats were trained in a radial maze consisting of tunnels that were transparent at their distal ends only. Because the central part of the maze was non-transparent, rats had to plan and execute appropriate trajectories without specific visual feedback from the environment. This situation was intended to encourage the reliance on prospective memory of the non-visited arms in selecting the following move. Our results show that acquisition performance was only slightly decreased compared to that shown in a completely transparent maze and considerably higher than in a translucent maze or in darkness. These two series of experiments indicate (1) that rats can learn about the relative position of different places with no common visual panorama, and (2) that they are able to plan and execute a sequence of visits to several places without direct visual feed-back about their relative position.
Resumo:
Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial sedimentary deposits. Here, we present the results of laboratory SIP measurements on saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We alter the pore characteristics using three principal methods: (i) variation of the grain sizes, (ii) changing the degree of compaction, and (iii) changing the level of sorting. We then examine how these changes affect both the SIP response and the hydraulic conductivity. In general, the results indicate a clear connection between the applied changes in pore characteristics and the SIP response. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the whole range of considered grain sizes.
Resumo:
The objectives of this study were to detect quantitative trait loci (QTL) for protein content in soybean grown in two distinct tropical environments and to build a genetic map for protein content. One hundred eighteen soybean recombinant inbred lines (RIL), obtained from a cross between cultivars BARC 8 and Garimpo, were used. The RIL were cultivated in two distinct Brazilian tropical environments: Cascavel county, in Paraná, and Viçosa county, in Minas Gerais (24º57'S, 53º27'W and 20º45'S, 42º52'W, respectively). Sixty-six SSR primer pairs and 65 RAPD primers were polymorphic and segregated at a 1:1 proportion. Thirty poorly saturated linkage groups were obtained, with 90 markers and 41 nonlinked markers. For the lines cultivated in Cascavel, three QTL were mapped in C2, E and N linkage groups, which explained 14.37, 10.31 and 7.34% of the phenotypic variation of protein content, respectively. For the lines cultivated in Viçosa, two QTL were mapped in linkage groups G and #1, which explained 9.51 and 7.34% of the phenotypic variation of protein content. Based on the mean of the two environments, two QTL were identified: one in the linkage group E (9.90%) and other in the group L (7.11%). In order for future studies to consistently detect QTL effects of different environments, genotypes with greater stability should be used.
Resumo:
The objectives of this work were to evaluate the richness and diversity of the Poduromorpha fauna in two biotopes in Restinga de Maricá, RJ, Brazil, to identify the characteristic species of each biotope and to determine the relationships between the community structure and the abiotic environmental parameters. Representatives of the Poduromorpha (Collembola) order were studied under an ecological viewpoint in halophyte-psammophyte vegetation and foredune zone in preserved areas of Restinga de Maricá, a sand dune environment in the state of Rio de Janeiro, Brazil. The foredune zone showed the highest diversity, richness and equitability of springtail species. Differences in the fundamental, accessory and accidental species in each environment were encountered. Paraxenylla piloua was found to be an indicator species of the halophyte-psammophyte vegetation, while Friesea reducta, Pseudachorutes difficilis and Xenylla maritima were indicators of the foredune zone. The canonical correspondence analysis indicated pH, organic matter content and soil humidity as the most important factors influencing the spatiotemporal distribution of the species.
Resumo:
The aim of this study was to evaluate abundance, biomass and diversity of earthworms in the southern coast region of the Mata Atlântica biodiversity hotspot. A total of 51 study sites in pastures, banana monocultures, mixed agroforestry systems, secondary forests in succession and old-growth forests near the coast of Paraná, Brazil, were evaluated. Each site was sampled once. Species richness of the earthworms was generally low and varied little between sites. At all sites except for one, the peregrine species Pontoscolex corethrurus (Glossoscolecidae) strongly dominated. Three other peregrine species, Amynthas corticis, Amynthas gracilis (Megascolecidae) and Ocnerodrilus occidentalis (Ocnerodrilidae), were frequent in moist sites. No autochthonous species were found. Abundance and biomass of earthworms varied strongly within and between sites (0-338 individuals m-2, 0-96 g m-2 fresh weight). Pastures had significantly lower abundance than all other sites. The forest sites had similar earthworm abundance and biomass, with a tendency to be higher in younger succession stages. The coastal plain region has been strongly altered by human activities. Reasons for the lack of any autochthonous species and the dominance of one peregrine species require further investigation.
Resumo:
The objectives of this work were to identify parents resistant to Asian soybean rust using diallel crosses, obtain information on the genetic control of soybean resistance to the pathogen and verify whether the combining ability estimates interact with the environment (year or time of assessment). The F1 generation was obtained in a greenhouse from crosses between five contrasting parents for the trait resistance to soybean rust, in a complete diallel without reciprocals. Two rust-severity assessments were carried out on individual soybean plants of 25 treatments (parents and F2 and F3 populations) in 2006/2007 and 2007/2008, in an experimental field at Embrapa Soja, Londrina, PR, Brazil. Additive effects predominated in the genetic control of soybean resistance to Asian rust, and the interaction of the segregant populations with the environment, although significant, did not alter the genetic parameter's general combining ability (GCA) and specific combining ability estimates, indicating that estimates obtained in one year and one assessment can be extrapolated to others. BR01-18437 inbred line is resistant to Asian rust and showed high GCA effects. This line should be used as parent if the objective is the resistance to Phakopsora pachyrhizi.