878 resultados para regression discrete models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop fast fitting methods for generalized functional linear models. An undersmooth of the functional predictor is obtained by projecting on a large number of smooth eigenvectors and the coefficient function is estimated using penalized spline regression. Our method can be applied to many functional data designs including functions measured with and without error, sparsely or densely sampled. The methods also extend to the case of multiple functional predictors or functional predictors with a natural multilevel structure. Our approach can be implemented using standard mixed effects software and is computationally fast. Our methodology is motivated by a diffusion tensor imaging (DTI) study. The aim of this study is to analyze differences between various cerebral white matter tract property measurements of multiple sclerosis (MS) patients and controls. While the statistical developments proposed here were motivated by the DTI study, the methodology is designed and presented in generality and is applicable to many other areas of scientific research. An online appendix provides R implementations of all simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children. Methods: Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model. Results: All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches. Conclusions: The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the degree to which gender, ethnicity, relationship to perpetrator, and geomapped socio-economic factors significantly predict the incidence of childhood sexual abuse, physical abuse and non- abuse. These variables are then linked to geographic identifiers using geographic information system (GIS) technology to develop a geo-mapping framework for child sexual and physical abuse prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^