874 resultados para regenerative amplification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two major difficulties facing widespread clinical implementation of existing Tissue Engineering (TE) strategies for the treatment of musculoskeletal disorders are (1) the cost, space and time required for ex vivo culture of a patient’s autologous cells prior to re-implantation as part of a TE construct, and (2) the potential risks and availability constraints associated with transplanting exogenous (foreign) cells. These hurdles have led to recent interest in endogenous TE strategies, in which the regenerative potential of a patient’s own cells is harnessed to promote tissue regrowth without ex vivo cell culture. This article provides a focused perspective on key issues in the development of endogenous TE strategies, progress to date, and suggested future research directions toward endogenous repair and regeneration of musculoskeletal tissues and organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas are one of the world's most important food crops, providing sustenance and income for millions of people in developing countries and supporting large export industries. Viruses are considered major constraints to banana production, germplasm multiplication and exchange, and to genetic improvement of banana through traditional breeding. In Africa, the two most important virus diseases are bunchy top, caused by Banana bunchy top virus (BBTV), and banana streak disease, caused by Banana streak virus (BSV). BBTV is a serious production constraint in a number of countries within/bordering East Africa, such as Burundi, Democratic Republic of Congo, Malawi, Mozambique, Rwanda and Zambia, but is not present in Kenya, Tanzania and Uganda. Additionally, epidemics of banana streak disease are occurring in Kenya and Uganda. The rapidly growing tissue culture (TC) industry within East Africa, aiming to provide planting material to banana farmers, has stimulated discussion about the need for virus indexing to certify planting material as virus-free. Diagnostic methods for BBTV and BSV have been reported and, for BBTV, PCR-based assays are reliable and relatively straightforward. However for BSV, high levels of serological and genetic variability and the presence of endogenous virus sequences within the banana genome complicate diagnosis. Uganda has been shown to contain the greatest diversity in BSV isolates found anywhere in the world. A broad-spectrum diagnostic test for BSV detection, which can discriminate between endogenous and episomal BSV sequences, is a priority. This PhD project aimed to establish diagnostic methods for banana viruses, with a particular focus on the development of novel methods for BSV detection, and to use these diagnostic methods for the detection and characterisation of banana viruses in East Africa. A novel rolling-circle amplification (RCA) method was developed for the detection of BSV. Using samples of Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV) from Australia, this method was shown to distinguish between endogenous and episomal BSV sequences in banana plants. The RCA assay was used to screen a collection of 56 banana samples from south-west Uganda for BSV. RCA detected at least five distinct BSV isolates in these samples, including BSOLV and Banana streak GF virus (BSGFV) as well as three BSV isolates (Banana streak Uganda-I, -L and -M virus) for which only partial sequences had been previously reported. These latter three BSV had only been detected using immuno-capture (IC)-PCR and thus were possible endogenous sequences. In addition to its ability to detect BSV, the RCA protocol was also demonstrated to detect other viruses within the family Caulimoviridae, including Sugar cane bacilliform virus, and Cauliflower mosaic virus. Using the novel RCA method, three distinct BSV isolates from both Kenya and Uganda were identified and characterised. The complete genome of these isolates was sequenced and annotated. All six isolates were shown to have a characteristic badnavirus genome organisation with three open reading frames (ORFs) and the large polyprotein encoded by ORF 3 was shown to contain conserved amino acid motifs for movement, aspartic protease, reverse transcriptase and ribonuclease H activities. As well, several sequences important for expression and replication of the virus genome were identified including the conserved tRNAmet primer binding site present in the intergenic region of all badnaviruses. Based on the International Committee on Taxonomy of Viruses (ICTV) guidelines for species demarcation in the genus Badnavirus, these six isolates were proposed as distinct species, and named Banana streak UA virus (BSUAV), Banana streak UI virus (BSUIV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), Banana streak CA virus (BSCAV) and Banana streak IM virus (BSIMV). Using PCR with species-specific primers designed to each isolate, a genotypically diverse collection of 12 virus-free banana cultivars were tested for the presence of endogenous sequences. For five of the BSV no amplification was observed in any cultivar tested, while for BSIMV, four positive samples were identified in cultivars with a B-genome component. During field visits to Kenya, Tanzania and Uganda, 143 samples were collected and assayed for BSV. PCR using nine sets of species-specific primers, and RCA, were compared for BSV detection. For five BSV species with no known endogenous counterpart (namely BSCAV, BSUAV, BSUIV, BSULV and BSUMV), PCR was used to detect 30 infections from the 143 samples. Using RCA, 96.4% of these samples were considered positive, with one additional sample detected using RCA which was not positive using PCR. For these five BSV, PCR and RCA were both useful for identifying infected samples, irrespective of the host cultivar genotype (Musa A- or B-genome components). For four additional BSV with known endogenous counterparts in the M. balbisiana genome (BSOLV, BSGFV, BSMYV and BSIMV), PCR was shown to detect 75 infections from the 143 samples. In 30 samples from cultivars with an A-only genome component there was 96.3% agreement between PCR positive samples and detection using RCA, again demonstrating either PCR or RCA are suitable methods for detection. However, in 45 samples from cultivars with some B-genome component, the level of agreement between PCR positive samples and RCA positive samples was 70.5%. This suggests that, in cultivars with some B-genome component, many infections were detected using PCR which were the result of amplification of endogenous sequences. In these latter cases, RCA or another method which discriminates between endogenous and episomal sequences, such as immuno-capture PCR, is needed to diagnose episomal BSV infection. Field visits were made to Malawi and Rwanda to collect local isolates of BBTV for validation of a PCR-based diagnostic assay. The presence of BBTV in samples of bananas with bunchy top disease was confirmed in 28 out of 39 samples from Malawi and all nine samples collected in Rwanda, using PCR and RCA. For three isolates, one from Malawi and two from Rwanda, the complete nucleotide sequences were determined and shown to have a similar genome organisation to previously published BBTV isolates. The two isolates from Rwanda had at least 98.1% nucleotide sequence identity between each of the six DNA components, while the similarity between isolates from Rwanda and Malawi was between 96.2% and 99.4% depending on the DNA component. At the amino acid level, similarities in the putative proteins encoded by DNA-R, -S, -M, - C and -N were found to range between 98.8% to 100%. In a phylogenetic analysis, the three East African isolates clustered together within the South Pacific subgroup of BBTV isolates. Nucleotide sequence comparison to isolates of BBTV from outside Africa identified India as the possible origin of East African isolates of BBTV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-established therapies for bone defects are restricted to bone grafts which face significant disadvantages (limited availability, donor site morbidity, insufficient integration). Therefore, the objective was to develop an alternative approach investigating the regenerative potential of medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) and silk-hydroxyapatite (silk-HA) scaffolds. Critical sized ovine tibial defects were created and stabilized. Defects were left untreated, reconstructed with autologous bone grafts (ABG) and mPCL-TCP or silk-HA scaffolds. Animals were observed for 12 weeks. X-ray analysis, torsion testing and quantitative computed tomography (CT) analyses were performed. Radiological analysis confirmed the critical nature of the defects. Full defect bridging occurred in the autograft and partial bridging in the mPCL-TCP group. Only little bone formation was observed with silk-HA scaffolds. Biomechanical testing revealed a higher torsional moment/stiffness (p < 0.05) and CT analysis a significantly higher amount of bone formation for the ABG group when compared to the silk-HA group. No significant difference was determined between the ABG and mPCL-TCP groups. The results of this study suggest that mPCL-TCP scaffolds combined can serve as an alternative to autologous bone grafting in long bone defect regeneration. The combination of mPCL-TCP with osteogenic cells or growth factors represents an attractive means to further enhance bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between host and donor cells is believed to play an important role in osteogenesis. However, it is still unclear how donor osteogenic cells behave and interact with host cells in vivo. The purpose of this study was to track the interactions between transplanted osteogenic cells and host cells during osteogenesis. In vitro migration assay was carried out to investigate the ability of osteogenic differentiated humanmesenchymal stemcells (O-hMSCs) to recruit MSCs. At the in vivo level, O-hMSCs were implanted subcutaneously or into skull defects in severe combined immunodeficient (SCID) mice. New bone formation was observed bymicro-CT and histological procedures. In situ hybridization (ISH) against human Alu sequences was performed to distinguish donor osteogenic cells from host cells. In vitro migration assay revealed an increased migration potential of MSCs by co-culturing with O-hMSCs. In agreement with the results of in vitro studies, ISH against human Alu sequences showed that host mouse MSCs migrated in large numbers into the transplantation site in response to O-hMSCs. Interestingly, host cells recruited by O-hMSCs were the major cell populations in newly formed bone tissues, indicating that O-hMSCs can trigger and initiate osteogenesis when transplanted in orthotopic sites. The observations fromthis study demonstrated that in vitro induced O-hMSCs were able to attract hostMSCs in vivo andwere involved inosteogenesis togetherwith host cells,whichmay be of importance for bone tissue-engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2010 LAGI competition was held on three underutilized sites in the United Arab Emirates. By choosing Staten Island, New York in 2012 the competition organises have again brought into question new roles for public open space in the contemporary city. In the case of the UEA sites, the competition produced many entries which aimed to create a sculpture and by doing so, they attracted people to the selected empty spaces in an arid climate. In a way these proposals were the incubators and the new characters of these empty spaces. The competition was thus successful at advancing understandings of the expanded role of public open spaces in EAU and elsewhere. LAGI 2012 differs significantly to the UAE program because Fresh Kills Park has already been planned as a public open space for New Yorkers - with or without these clean energy sculptures. Furthermore, Fresh Kills Park is already an (gas) energy generating site in its own right. We believe Fresh Kills Park, as a site, presents a problem which somewhat transcends the aims of the competition brief. Advancing a sustainable urban design proposition for the site therefore requires a fundamental reconsideration of the established paradigms public open space. Hence our strategy is to not only create an energy generating, site specific art work, but to create synergy between the public and the site engagement while at the same time complement the idiosyncrasies of the pre-existing engineered landscape. Current PhD research about energy generation in public open spaces informs this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultured limbal tissue transplants have become widely used over the last decade as a treatment for limbal stem cell deficiency (LSCD). While the number of patients afflicted with LSCD in Australia and New Zealand is considered to be relatively low, the impact of this disease on quality of life is so severe that the potential efficacy of cultured transplants has necessitated investigation. We presently review the basic biology and experimental strategies associated with the use of cultured limbal tissue transplants in Australia and New Zealand. In doing so, we aim to encourage informed discussion on the issues required to advance the use of cultured limbal transplants in Australia and New Zealand. Moreover, we propose that a collaborative network could be established to maintain access to the technology in conjunction with a number of other existing and emerging treatments for eye diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardly a month goes by within the scientific literature without some new material “X” being reported as a suitable material on which to grow cell type “Y”, for the potential purpose of treating disease “Z”. Thus when fibroin, a protein found in silk, was first proposed as a biomaterial for cell growth [1] it joined a long list of other materials of both natural as well as synthetic origin. Nevertheless, in the second decade of the Asian Century it is perhaps befitting that a material of so much importance to the continent’s cultural and economic history, should become the focus of cutting-edge biomedical research. Sentiments aside, however, silk fibroin possesses quite a unique combination of properties which make it a promising candidate for repairing the eye and especially for treating damage to the cornea, the transparent window at the front of the eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroin extracted from silkworm cocoon silk provides an intriguing and potentially important biomaterial for corneal reconstruction. In the present chapter we outline our methods for producing a composite of two fibroin-based materials that supports the co-cultivation of human limbal epithelial (HLE) cells and human limbal stromal (HLS) cells. The resulting tissue substitute consists of a stratified epithelium overlying a three-dimensional arrangement of extracellular matrix components (principally ‘degummed’ fibroin fibers) and mesenchymal stromal cells. This tissue substitute is currently being evaluated as a tool for reconstructing the corneal limbus and corneal epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wound healing involves a complex series of biochemical events and has traditionally been managed with 'low tech' dressings and bandages. The concept that diagnostic and theranostic sensors can complement wound management is rapidly growing in popularity as there is tremendous potential to apply this technology to both acute and chronic wounds. Benefits in sensing the wound environment include reduction of hospitalization time, prevention of amputations and better understanding of the processes which impair healing. This review discusses the state-of-the-art in detection of markers associated with wound healing and infection, utilizing devices imbedded within dressings or as point-of-care techniques to allow for continual or rapid wound assessment and monitoring. Approaches include using biological or chemical sensors of wound exudates and volatiles to directly or indirectly detect bacteria, monitor pH, temperature, oxygen and enzymes. Spectroscopic and imaging techniques are also reviewed as advanced wound monitoring techniques. The review concludes with a discussion of the limitations of and future directions for this field.