577 resultados para redbay ambrosia beetle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective pest management relies on accurate delimitation of species and, beyond this, on accurate species identification. Mitochondrial COI sequences are useful for providing initial indications in delimiting species but, despite acknowledged limitations in the method, many studies involving COI sequences and species problems remain unresolved. Here we illustrate how such impasses can be resolved with microsatellite and nuclear sequence data, to assess more directly the amount of gene flow between divergent lineages. We use a population genetics approach to test for random mating between two 8 ± 2% divergent COI lineages of the rusty grain beetle, Cryptolestes ferrugineus (Stephens). This species has become strongly resistant to phosphine, a fumigant used worldwide for disinfesting grain. The possibility of cryptic species would have significant consequences for resistance management, especially if resistance was confined to one mitochondrial lineage. We find no evidence of restricted gene flow or nonrandom mating across the two COI lineages of these beetles, rather we hypothesize that historic population structure associated with early Pleistocene climate changes likely contributed to divergent lineages within this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los peces cebra son utilizados como modelo biológico para screening primario de extractos de plantas con potencial bioactividad, aprovechando sus similitudes: genética, fisiológica y respuesta farmacológica con los mamíferos. En el estudio se empleó este modelo para valorar la actividad antiinflamatoria de 36 extractos metanólicos de plantas medicinales utilizadas en las provincias de Azuay y Loja (Ecuador). Parte del material vegetal fue recolectado con el aporte de una hierbatera de etnia Saraguro. Los extractos fueron preparados por percolación y su toxicidad fue evaluada en peces cebra en concentraciones variables de 400 a 3,125 μg/ml, determinándose la máxima concentración tolerada para cada uno de ´estos. La actividad antiinflamatoria se evaluó a través del ensayo de migración leucocitaria inducida por lipopolisacárido de Sallmonella typhi. Los extractos de: Cestrum aff. peruvianum, Galinsoga parviflora, Galium sp., Oenothera tetraptera, Peperomia aff. galioides , Passiflora ampullaceae y Ambrosia arborescens, correspondientes al 18,92% de los analizados, mostraron un potencial antiinflamatorio comparable con indometacina y dexametasona; siendo el extracto metanólico de Cestrum aff. peruvianum el más relevante a 50 g/ml. El análisis fitoquímico básico de los extractos se realizó por cromatografía de capa fina, evidenciándose la presencia de saponinas y terpenoidoes como compuestos principales en la mayoría de los extractos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decisions affecting the management of natural resources in agricultural landscapes are influenced by both social and ecological factors. Models that integrate these factors are likely to better predict the outcomes of natural resource management decisions compared to those that do not take these factors into account. We demonstrate how Bayesian Networks can be used to integrate ecological and social data and expert opinion to model the cost-effectiveness of revegetation activities for restoring biodiversity in agricultural landscapes. We demonstrate our approach with a case-study in grassy woodlands of south-eastern Australia. In our case-study, cost-effectiveness is defined as the improvement in native reptile and beetle species richness achieved per dollar spent on a restoration action. Socio-ecological models predict that weed control, the planting of trees and shrubs, the addition of litter and timber, and the addition of rocks are likely to be the most cost-effective actions for improving reptile and beetle species richness. The cost-effectiveness of restoration actions is lower in remnant and revegetated areas than in cleared areas because of the higher marginal benefits arising from acting in degraded habitats. This result is contingent on having favourable landowner attitudes. Under the best-case landowner demographic scenarios the greatest biodiversity benefits are seen when cleared areas are restored. We find that current restoration investment practices may not be increasing faunal species richness in agricultural landscapes in the most cost-effective way, and that new restoration actions may be necessary. Integrated socio-ecological models support transparent and cost-effective conservation investment decisions. Application of these models highlights the importance of collecting both social and ecological data when attempting to understand and manage socio-ecological systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat restoration has become an important part of biodiversity conservation in the face of extensive habitat loss and fragmentation, especially in agricultural landscapes. Study of invertebrates such as beetles (Coleoptera) may be important to assess the effectiveness of restoration techniques in maintaining native fauna, because they provide a variety of trophic roles and ecosystem services. In this study we examined the conservation value for beetles of revegetation in linear strips and alongside remnant patches compared with remnant vegetation and cleared roadsides. We also assessed how habitat variables structured beetle community composition. Beetle species richness and abundance did not substantially differ between revegetated, remnant and cleared areas, and was not substantially influenced by vegetation type and structure. Herbivorous beetles and the family Curculionidae were more species rich in cleared linear strips. Beetle fauna in these agricultural landscapes may be a robust subset of the pre-clearing beetle community, possibly due to the widespread degradation of remnant areas and the ground layer habitats within them. One beetle species had slightly higher abundance in remnant linear strips, suggesting that remnant habitats may be important for some beetle species. Importantly, environmental variables strongly influenced beetle community composition, signifying that beetle communities are still responding to factors such as soil type and native vegetation, rather than variables mainly associated with land management. The restoration practices currently being undertaken in agricultural areas may not maintain beetle species that require specific habitat variables to survive. Ground-layer attributes need to be included in future revegetation projects, and translocation of specialist species of beetles may be required to restore communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermittent stream systems create a mosaic of aquatic habitat that changes through time, potentially challenging freshwater invertebrate dispersal. Invertebrates inhabiting these mosaics may show stronger dispersal capacity than those in perennial stream systems. To relate different combinations of dispersal and drought survival strategies to species persistence, we compared the distribution and dispersal potential of six invertebrate species across all streams in a montane landscape where drying is becoming increasingly frequent and prolonged. Invertebrates were collected from seventeen streams in the Victoria Range, Grampians National Park, Victoria, Australia. The species analysed were as follows: the caddisflies Lectrides varians Moseley (Leptoceridae) and Agapetus sp. (Glossosomatidae); the mayflies Nousia AV1 and Koorrnonga AV3 (Leptophlebiidae); the water penny beetle Sclerocyphon sp. (Psephenidae); and a freshwater crayfish Geocharax sp. nov. 1 (Parastacidae). These species were widespread in the streams and varied in their dispersal and drought survival strategies. The distribution of each species across the Victoria Range, their drought responses and within-stream habitat associations were determined. Hypotheses of the dispersal capacity and population structure for each species were developed and compared to four models of gene flow: Death Valley Model (DVM), Stream Hierarchy Model (SHM), Headwater Model (HM) or panmixia (PAN). Molecular genetic methods were then used to infer population structure and dispersal capacity for each species. The large caddisfly Lectrides resisted drought through aestivation and was panmictic (PAN) indicating strong dispersal capacity. Conversely, the small caddisfly Agapetus relied on perennially flowing reaches and gene flow was limited to short distances among stream headwaters, resembling the HM. Both mayflies depended on perennial surface water during drying and showed evidence of gene flow among streams: Koorrnonga mainly dispersed along stream channels within catchments, resembling the SHM, whereas Nousia appeared to disperse across land by adult flight. Sclerocyphon relied on perennial water to survive drying and showed an unusual pattern of genetic structure that indicated limited dispersal but did not resemble any of the models. Geocharax survived drought through aestivation or residence in perennial pools, and high levels of genetic structure indicated limited dispersal among streams, resembling the DVM. Despite good knowledge of species' drought survival strategies, the population structure of four species differed from predictions. Dispersal capacity varied strongly among species; most species were poor dispersers and only one species showed panmixia. Therefore, intermittent stream species may not necessarily be better dispersers than those in perennial streams. Species showing strong drought resistance strategies differed in dispersal capacity. Knowledge of life-history characteristics, distribution and refuge use does not necessarily enable successful prediction of invertebrate dispersal pathways or population structure. Dispersal among intermittent streams may be restricted to relatively short distances (km) for most invertebrate species. Thus, frequent drought refuges (perennial water) that provide strong connectivity to subpopulations through stream flow (hydrological dispersal), or continuous terrestrial vegetation (flight dispersal), will be critical to maintain genetic diversity, adaptability and population persistence.