973 resultados para realistic neural modeling
Resumo:
INTRODUCTION: This study aimed to evaluate the effect of the neural mobilization technique on electromyography function, disability degree, and pain in patients with leprosy. METHODS: A sample of 56 individuals with leprosy was randomized into an experimental group, composed of 29 individuals undergoing treatment with neural mobilization, and a control group of 27 individuals who underwent conventional treatment. In both groups, the lesions in the lower limbs were treated. In the treatment with neural mobilization, the procedure used was mobilization of the lumbosacral roots and sciatic nerve biased to the peroneal nerve that innervates the anterior tibial muscle, which was evaluated in the electromyography. RESULTS: Analysis of the electromyography function showed a significant increase (p<0.05) in the experimental group in both the right (Δ%=22.1, p=0.013) and the left anterior tibial muscles (Δ%=27.7, p=0.009), compared with the control group pre- and post-test. Analysis of the strength both in the movement of horizontal extension (Δ%right=11.7, p=0.003/Δ%left=27.4, p=0.002) and in the movement of back flexion (Δ%right=31.1; p=0.000/Δ%left=34.7, p=0.000) showed a significant increase (p<0.05) in both the right and the left segments when comparing the experimental group pre- and post-test. The experimental group showed a significant reduction (p=0.000) in pain perception and disability degree when the pre- and post-test were compared and when compared with the control group in the post-test. CONCLUSIONS: Leprosy patients undergoing the technique of neural mobilization had an improvement in electromyography function and muscle strength, reducing disability degree and pain.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
Organizations are undergoing serious difficulties to retain talent. Authors argue that Talent Management (TM) practices create beneficial outcomes for individuals and organizations. However, there is no research on the leaders’ role in the functioning of these practices. This study examines how LMX and role modeling influence the impact that TM practices have on employees’ trust in their organizations and retention. The analysis of two questionnaires (Nt1=175; Nt2=107) indicated that TM only reduced turnover intentions, via an increase in trust in the organization, when role modeling was high and not when it was low. Therefore, we can say that leaders are crucial in the TM context, and in sustaining a competitive advantage for organizations.
Resumo:
Introduction Leprosy is a chronic infectious disease that is caused by Mycobacterium leprae. The objective of this study was to evaluate the risk factors that are associated with neural alterations and physical disabilities in leprosy patients at the time of diagnosis. Methods A prospective cross-sectional study was conducted on 155 leprosy patients who participated in a program that aimed to eliminate leprosy from São Luis, State of Maranhão. Results Patients who were 31-45 years of age, were older than 60 years of age or had a partner were more likely to have a disability. Patients with partners were 1.14 times more likely (p = 0.025) to have disabilities of the hands. The frequency of disabilities in the feet among the patients with different clinical forms of leprosy was statistically significant. Conclusions The identification of risk factors that are associated with neural alterations and physical disabilities in leprosy patients is important for diagnosing the disease because this approach enables physicians to plan and prioritize actions for the treatment and monitoring of patients.
Resumo:
This paper presents an application of an Artificial Neural Network (ANN) to the prediction of stock market direction in the US. Using a multilayer perceptron neural network and a backpropagation algorithm for the training process, the model aims at learning the hidden patterns in the daily movement of the S&P500 to correctly identify if the market will be in a Trend Following or Mean Reversion behavior. The ANN is able to produce a successful investment strategy which outperforms the buy and hold strategy, but presents instability in its overall results which compromises its practical application in real life investment decisions.
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Customer lifetime value (LTV) enables using client characteristics, such as recency, frequency and monetary (RFM) value, to describe the value of a client through time in terms of profitability. We present the concept of LTV applied to telemarketing for improving the return-on-investment, using a recent (from 2008 to 2013) and real case study of bank campaigns to sell long- term deposits. The goal was to benefit from past contacts history to extract additional knowledge. A total of twelve LTV input variables were tested, un- der a forward selection method and using a realistic rolling windows scheme, highlighting the validity of five new LTV features. The results achieved by our LTV data-driven approach using neural networks allowed an improvement up to 4 pp in the Lift cumulative curve for targeting the deposit subscribers when compared with a baseline model (with no history data). Explanatory knowledge was also extracted from the proposed model, revealing two highly relevant LTV features, the last result of the previous campaign to sell the same product and the frequency of past client successes. The obtained results are particularly valuable for contact center companies, which can improve pre- dictive performance without even having to ask for more information to the companies they serve.
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
PhD Thesis in Bioengineering
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.