966 resultados para quantifying heteroskedasticity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

General circulation models (GCMs) use transient climate simulations to predict climate conditions in the future. Coarse-grid resolutions and process uncertainties necessitate the use of downscaling models to simulate precipitation. However, in the downscaling models, with multiple GCMs now available, selecting an atmospheric variable from a particular model which is representative of the ensemble mean becomes an important consideration. The variable convergence score (VCS) provides a simple yet meaningful approach to address this issue, providing a mechanism to evaluate variables against each other with respect to the stability they exhibit in future climate simulations. In this study, VCS methodology is applied to 10 atmospheric variables of particular interest in downscaling precipitation over India and also on a regional basis. The nested bias-correction methodology is used to remove the systematic biases in the GCMs simulations, and a single VCS curve is developed for the entire country. The generated VCS curve is expected to assist in quantifying the variable performance across different GCMs, thus reducing the uncertainty in climate impact-assessment studies. The results indicate higher consistency across GCMs for pressure and temperature, and lower consistency for precipitation and related variables. Regional assessments, while broadly consistent with the overall results, indicate low convergence in atmospheric attributes for the Northeastern parts of India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial error structure of daily precipitation derived from the latest version 7 (v7) tropical rainfall measuring mission (TRMM) level 2 data products are studied through comparison with the Asian precipitation highly resolved observational data integration toward evaluation of the water resources (APHRODITE) data over a subtropical region of the Indian subcontinent for the seasonal rainfall over 6 years from June 2002 to September 2007. The data products examined include v7 data from the TRMM radiometer Microwave Imager (TMI) and radar precipitation radar (PR), namely, 2A12, 2A25, and 2B31 (combined data from PR and TMI). The spatial distribution of uncertainty from these data products were quantified based on performance metrics derived from the contingency table. For the seasonal daily precipitation over a subtropical basin in India, the data product of 2A12 showed greater skill in detecting and quantifying the volume of rainfall when compared with the 2A25 and 2B31 data products. Error characterization using various error models revealed that random errors from multiplicative error models were homoscedastic and that they better represented rainfall estimates from 2A12 algorithm. Error decomposition techniques performed to disentangle systematic and random errors verify that the multiplicative error model representing rainfall from 2A12 algorithm successfully estimated a greater percentage of systematic error than 2A25 or 2B31 algorithms. Results verify that although the radiometer derived 2A12 rainfall data is known to suffer from many sources of uncertainties, spatial analysis over the case study region of India testifies that the 2A12 rainfall estimates are in a very good agreement with the reference estimates for the data period considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An action is typically composed of different parts of the object moving in particular sequences. The presence of different motions (represented as a 1D histogram) has been used in the traditional bag-of-words (BoW) approach for recognizing actions. However the interactions among the motions also form a crucial part of an action. Different object-parts have varying degrees of interactions with the other parts during an action cycle. It is these interactions we want to quantify in order to bring in additional information about the actions. In this paper we propose a causality based approach for quantifying the interactions to aid action classification. Granger causality is used to compute the cause and effect relationships for pairs of motion trajectories of a video. A 2D histogram descriptor for the video is constructed using these pairwise measures. Our proposed method of obtaining pairwise measures for videos is also applicable for large datasets. We have conducted experiments on challenging action recognition databases such as HMDB51 and UCF50 and shown that our causality descriptor helps in encoding additional information regarding the actions and performs on par with the state-of-the art approaches. Due to the complementary nature, a further increase in performance can be observed by combining our approach with state-of-the-art approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<= 3 mm wide) for 1-4 months, and c) made available to all seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of each of the six different types of morphological imperfection - waviness, non-uniform cell wall thickness, cell-size variations, fractured cell walls, cell-wall misalignments, and missing cells - on the yielding of 2D cellular solids has been studied systematically for biaxial loading. Emphasis is placed on quantifying the knock-down effect of these defects on the hydrostatic yield strength and upon understanding the associated deformation mechanisms. The simulations in the present study indicate that the high hydrostatic strength, characteristic of ideal honeycombs, is reduced to a level comparable with the deviatoric strength by several types of defect. The common source of this large knock-down is a switch in deformation mode from cell wall stretching to cell wall bending under hydrostatic loading. Fractured cell edges produce the largest knock-down effect on the yield strength of 2D foams, followed in order by missing cells, wavy cell edges, cell edge misalignments, Γ Voronoi cells, δ Voronoi cells, and non-uniform wall thickness. A simple elliptical yield function with two adjustable material parameters successfully fits the numerically predicted yield surfaces for the imperfect 2D foams, and shows potential as a phenomenological constitutive law to guide the design of structural components made from metallic foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decisions concerning maintenance have become increasingly important and requires a diverse set of information as systems become more complex. The availability of information has an impact on the effectiveness of these decisions, and thus on the performance of the asset. This paper highlights the importance of quantifying the value of information on maintenance decisions and asset performance. In particular, we emphasise the need to focus on measuring value as opposed to cost of maintenance, which is the current practice. In this direction, we propose a measure - Value of Ownership (VOO) - to assess the value of information and performance of maintenance decisions throughout an assets lifecycle. © 2009 IFAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the scaling criteria of polymer flooding reservoir obtained in our previous work in which the gravity and capillary forces, compressibility, non-Newtonian behavior, absorption, dispersion, and diffusion are considered, eight partial similarity models are designed. A new numerical approach of sensitivity analysis is suggested to quantify the dominance degree of relaxed dimensionless parameters for partial similarity model. The sensitivity factor quantifying the dominance degree of relaxed dimensionless parameter is defined. By solving the dimensionless governing equations including all dimensionless parameters, the sensitivity factor of each relaxed dimensionless parameter is calculated for each partial similarity model; thus, the dominance degree of the relaxed one is quantitatively determined. Based on the sensitivity analysis, the effect coefficient of partial similarity model is defined as the summation of product of sensitivity factor of relaxed dimensionless parameter and its relative relaxation quantity. The effect coefficient is used as a criterion to evaluate each partial similarity model. Then the partial similarity model with the smallest effect coefficient can be singled out to approximate to the prototype. Results show that the precision of partial similarity model is not only determined by the number of satisfied dimensionless parameters but also the relative relaxation quantity of the relaxed ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases are nowadays the first cause of mortality worldwide, causing around the 30% of global deaths each year. The risk of suffering from cardiovascular illnesses is strongly related to some factors such as hypertension, high cholesterol levels, diabetes, obesity The combination of these different risk factors is known as metabolic syndrome and it is considered a pandemic due to the high prevalence worldwide. The pathology of the disorders implies a combined cardiovascular therapy with drugs which have different targets and mechanisms of action, to regulate each factor separately. The simultaneous analysis of these drugs turns interesting but it is a complex task since the determination of multiple substances with different physicochemical properties and physiological behavior is always a challenge for the analytical chemist. The complexity of the biological matrices and the difference in the expected concentrations of some analytes require the development of extremely sensitive and selective determination methods. The aim of this work is to fill the gap existing in this field of the drug analysis, developing analytical methods capable of quantifying the different drugs prescribed in combined cardiovascular therapy simultaneously. Liquid chromatography andem mass spectrometry (LCMS/MS) has been the technique of choice throughout the main part of this work, due to the high sensitivity and selectivity requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluate the efficiency of your change initiative The Impact Calculator can be used to demonstrate the impact of a process redesign or system implementation by quantifying the tangible benefits or efficiency gains that can be derived from it: identifying and recording the efficiency savings and costs of a process redesign determine if and when a return on investment (ROI) is made identify and measure as many benefits as you wish quantifying efficiency savings in monetary and non-monetary terms