957 resultados para pump-probe technique
Resumo:
We present a measurement of the top quark mass in the all-hadronic channel (\tt $\to$ \bb$q_{1}\bar{q_{2}}q_{3}\bar{q_{4}}$) using 943 pb$^{-1}$ of \ppbar collisions at $\sqrt {s} = 1.96$ TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to $\ttbar$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 $\pm$ 3.7 (stat.+JES) $\pm$ 2.1 (syst.) GeV/$c^{2}$. The combined uncertainty on the top quark mass is 4.3 GeV/$c^{2}$.
Resumo:
The fracture behavior of concrete–concrete interface is characterized using acoustic emission (AE). Beams of different sizes having jointed interface between two different strengths of concrete are tested. The results of load, displacement, CMOD, AE-events and AE-energy are analyzed. The width of fracture process zone and damage zone are computed using AE-data and are found to be independent of size. It is observed that, as the difference in compressive strength of concrete on either side of interface increases, the load carrying capacity, number of AE-events, AE-energy, width of fracture process zone and damage zone decreases.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor
Resumo:
This paper discusses a successful application of the Acoustic Emission Technique (AET) for the detection and location of leak paths present on an inaccessible side of an end shield of a Pressurised Heavy Water Reactor (PHWR). The methodology was based on the fact that air- and water-leak AE signals have different characteristic features. Baseline data was generated from a sound end shield of a PHWR for characterising the background noise. A mock-up end shield system with saw-cut leak paths was used to verify the validity of the methodology. It was found that air-leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of defective end shield were acquired and analysed. It was possible to detect and locate leak paths. The presence of detected leak paths was further confirmed by an alternative test.
Resumo:
A simple, sufficiently accurate and efficient method for approximate solutions of the Falkner-Skan equation is proposed here for a wide range of the pressure gradient parameter. The proposed approximate solutions are obtained utilising a known solution of another differential equation.
Resumo:
A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.
Resumo:
Double perovskite oxides Sr2FeMoO6 have attracted a great interest for their peculiar magneto-transport properties, and, ill particular, for the large values of low-field magneto-resistance (MR) which remains elevated even at room temperature, thanks to their high Curie temperature (T-c > 400 K). These properties are strongly influenced by chemical cation disorder, that is by the relative arrangement of Fe and Mo on their sublattices: the regular alternation of Fe and Mo enhances the M R and saturation magnetization. On the contrary the disorder generally depresses the magnetization and worsen the MR response. In this work the X-ray absorption fine structure (XAFS) technique has been employed in order to probe the cation order from a local point of view. XAFS spectra were collected at the Fe and Mo K edges on Sr2FeMoO6 samples with different degree of long-range chemical order. The XAFS results prove that a high degree of short-range cation order is preserved, despite the different long-range order: the Fe-Mo correlations are always preferred over the Fe-Fe and Mo-Mo ones in the perfectly ordered as well as in highly disordered samples.
Resumo:
Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.
Resumo:
Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.
Resumo:
This paper mainly concentrates on the application of the direct torque control (DTC) technique for the induction machine based integrated startergenerator (ISG) for automobile applications. It also discusses in brief about the higher DC bus voltage requirements in the automobiles i.e. present 14V system vs. 42V system to meet the power requirements, modes of operation of ISG, electric machine and the drive selection for the ISG,description of DTC technique, simulation and experimental results, and implementation.
Resumo:
The creep behaviour of a creep-resistant AE42 magnesium alloy has been examined in the temperature range of 150 to 240 degrees C at the stress levels ranging from 40 to 120 MPa using impression creep technique. A normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the temperatures and stresses employed The stress exponent varies from 5.1 to 5.7 and the apparent activation energy varies from 130 to 140 kJ/mol, which suggests the high temperature climb of dislocation controlled by lattice self-diffusion being the dominant creep mechanism in the stress and temperature range employed The creep behaviour of the AE42 alloy has also been compared with its composites reinforced with Saffil short fibres and SiC particles in four combinations. All the composites exhibited a lower creep rate than the monolithic AE42 alloy tested at the same temperature and stress levels and the decrease in creep rate was greater in the longitudinal direction than in the transverse direction, as expected. All the hybrid composites, i.e., the composites reinforced with a combination of Saffil short fibres and SiC particles, exhibited creep rates comparable to the composite reinforced with 20% Saffil short fibres alone at all the temperature and stress levels employed, which is beneficial from the commercial point of view.