886 resultados para pseudomonas aeruginosa
Resumo:
Considering the quality of the phytotherapic agents, it is important to point out that it includes rigorous attendance of the different steps of the development and production of these products, from the collection of the vegetable to the availability of the final product. In this work the quality control of the Operculina macrocarpa (Linn) Urb. roots, popularly known as 'batata-de-purga', was carried out. Pharmacopoeic and no pharmacopoeic methodologies were employed to physico-chemical and microbiological quality control. The obtained results showed that the roots presents a content of resin of 9,85%, The microbiological analysis did not present pathogenic growth among the other accomplished tests. The work stands out the importance of the establishment of norms for the quality control for the plants, so that they are found able to be used for phytotherapic reasons.
Resumo:
Water is the raw material used most in the production of diverse pharmaceutical forms and, being a constituent of the formulation itself, is subject to a number of physico-chemical and microbiological specifications. In addition, it is indispensable for laboratory tests and the cleaning of equipment and apparatus. The aim of this study was to ascertain the degree of physicochemical and microbiological contamination of purified water used in compounding pharmacies in the city of São José do Rio Preto, SP, Brazil. Samples were taken as recommended in the USP Pharmacopeia, with careful aseptic technique, and sent immediately the to quality control laboratory. Physicochemical properties were analyzed, including appearance, pH, conductivity, residue after evaporation, ammonia, calcium, chloride, heavy metals, sulfate and oxidizable substances, and microbiological tests were performed: total aerobic microbial count and detection of total and thermotolerant coliforms and Pseudomonas aeruginosa. Results showed that some parameters did not conform to the standards, especially pH, conductivity, inorganic impurities, oxidizable substances and microbiological test data, in 10%, 17%, 10%, 14% and 20% of the analyzed samples, respectively, This points to the need for greater care in the production and/or storage of purified water in these pharmaceutical establishments.
Resumo:
Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.
Resumo:
Background: Necrotizing soft tissue infection (NSTI) is characterized by progressive infectious gangrene of the skin and subcutaneous tissue. Its treatment involves intensive care, broad-spectrum antibiotic therapy, and full debridement. Methods: We present two cases of NSTI of the breast, adding these cases to the 14 described in the literature, reviewing the characteristics and evolution of all cases. Case Report: On the fourth day after mastectomy, a 59-year-old woman with ulcerated breast cancer developed Type I NSTI caused by Pseudomonas aeruginosa, which had a favorable evolution after debridement and broad-spectrum antibiotics. The second patient was a 57-year-old woman submitted to a mastectomy and axillary dissection, who had recurrent seromas. On the 32nd post-operative day, after a seroma puncture, she developed Type II NSTI caused by β-hemolytic streptococci. She developed sepsis and died on the tenth day after debridement, intensive care, and broad-spectrum antibiotics. The cases are the first description of breast NSTI after mammary seroma aspiration and the first report of this condition caused by P. aeruginosa. Conclusion: Necrotizing soft tissue infection is rare in breast tissue. It frequently is of Type II, occurring mainly after procedures in patients with breast cancer. The surgeon's participation in controlling the focus of the infection is of fundamental importance, and just as important are broad-spectrum antibiotic therapy and support measures, such as maintenance of volume, correction of electrolytic disorders, and treatment of sepsis and septic shock. Once the infection has been brought under control, skin grafting or soft tissue flaps can be considered. The mortality rate in breast NSTI is 18.7%, all deaths being in patients with the fulminant Type II form. Surgical oncologists need to be alert to the possibility of this rare condition. © 2012, Mary Ann Liebert, Inc.
Resumo:
The microbiological quality of bottled mineral water of various domestic brands sold in Brazil was investigated, with particular focus on the heterotrophic plate count (HPC). Neither total coliforms nor Escherichia coli were found in any 1.5 L bottle samples. Total coliforms were found in 2.9% of the small bottles, while in 20 L bottles the presence of total coliforms and E. coli was demonstrated in 15.5 and 2.4% of samples, respectively. Pseudomonas aeruginosa was detected in 4.3, 4.5 and 9.5% of small, 1.5 and 20 L bottles, respectively. In 36.4% of the samples of 1.5 L bottles, the HPC was above 500 cfu/mL. This percentage of samples with an HPC above 500 cfu/mL increased to 52.0 and 61.9% in small and 20 L bottles, respectively. Higher contamination by total coliforms, E. coli, P. aeruginosa and HPCs occurred in 20 L bottles. In conclusion, several samples in this study were outside the international quality standard for mineral water and the large number of samples with high HPCs shows that more work must be done on the use of HPC in mineral water and the damaging effects that these microorganisms may cause to humans. The bottled mineral water was confirmed as a particularly important public health problem, due to the poor microbiological quality of the products that are marketed. © IWA Publishing 2012.
Resumo:
Pomegranate (PGE) and green tea (GTGE) glycolic extracts are being employed in formulations because of their antiseptic and astringent effects. Apricot (AGE) glycolic extract possesses function cooling and antibacterial. The aim was to verify the antibacterial activity of these extracts incorporated in gel base. The antibacterial activity was verified by diffusion in agar method, using cylinder in plate. Plates containing Staphylococcus aureus (ATCC 6538p), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 10536) and Salmonella sp. (ATCC 19196) were incubated at 37°C for 24 hours. After incubation, the results were analysed with a pachymeter, observing the bacterial growth inhibition halo diameter and the statistical significance level was determined. PGE presented activity only against P. aeruginosa; GTGE presented activity against S. aureus, P. aeruginosa and E. coli; and AGE presented activity against P. aeruginosa and Salmonella sp. According to the experimental conditions, it is possible to conclude that GTGE presented the greater growth inhibition halo diameter when compared with other extracts, suggesting higher antibacterial action of this extract.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
The microbiological control of moisturizing mask formulation added of hibiscus flowers, assai palm, black mulberry and papaw glycolic extracts, determining the number of viable microorganisms and possible presence of pathogenic. The moisturizing mask formulation was composed of zinc oxide (5. 0%) and moisturizing cream constituted of triceteareth-4 phosphate (and) cetyl alcohol (and) stearyl alcohol (and) sodium cetearyl sulfate (and) oleth-10 (qs 50g). To this formulation was added hibiscus flowers glycolic extract (2. 5%), assai palm glycolic extract (1. 5%), black mulberry glycolic extract (1. 5%) and papaw glycolic extract (2. 0%). The formulation was stored in aseptically clean recipients, away from humidity and light, in fresh and airy places. The results of the microbiological analysis on the counting of aerobic mesophilic microorganisms (bacteria and fungi), of the above mentioned formulation, revealed a bioburden < 10 CFU/mL in all samples. Such data indicate adequate microbiological quality of the tested products, according to official recommendations. Furthermore, it was not detected the presence of pathogenic microorganisms, assuring the harmlessness of the formulation. The results lead us to conclude that the formulation and raw materials analyzed did not present microbial contamination, evidenced for estimating the number of viable microorganisms (<10 UFC/g) and for researching pathogens.
Resumo:
Purpose: This paper aims to evaluate in vitro antibacterial activity of oregano essential oil against foodborne pathogens as a starting point for the use of spice as a natural preservative in food. Design/methodology/approach: Disc and well-diffusion assays were performed to investigate antibacterial activity of oregano essential oil against six bacteria strains: Bacillus cereus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella Typhimurium. Three concentrations of oregano essential oil were employed: 1.0 percent, 2.0 percent and 5.0 percent. Bacterial growth inhibition was determinate as the diameter of the inhibition zones. Findings: Oregano essential oil showed antibacterial activity against spoilage microorganisms, at different concentrations, except for P. aeruginosa. There was a significant difference between methodologies only for the microorganism S. aureus. The results provided evidence of the existence of significant differences among the concentrations of oregano essential oil for each microorganism evaluated. Research limitations/implications: Although the research for this paper involved only oregano essential oil, it provided a starting-point for further investigations concerning spices as natural preservatives for food systems. Practical implications: Disc and well-assays were found to be simple and reproducible practical methods. Other spices, their essential oil and extracts might be researched against other micro-organisms. Furthermore, in situ studies need to be performed to evaluate possible interactions between essential oils and compounds naturally present in food against microbial strains. Social implications: The imminent adoption of measures to reduce the use of additives in foods and the reduction on using such compounds. Originality/value: This study provides insights that suggest a promising exploratory development of food natural preservative against spoilage microorganisms in food systems by the use of oregano essential oil. © Emerald Group Publishing Limited.
Resumo:
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile21)-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC13]Ctx(Ile21)-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile21)-Ha and [TOAC13]Ctx(Ile21)-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC0]Ctx(Ile21)-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC2 and TOAC13 derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane. © 2013 Vicente et al.
Resumo:
Quantitative variations in heterotrophic plate count (HPC) and in the presence of indicator microorganisms in 0.5, 1.5 and 20-L bottles of different brands of Brazilian mineral water were analyzed during their shelf life. No variations were identified in the presence of indicator microorganisms, but quantitative variations in HPC were observed in some brands, which suggests that changes may be occurring in the water quality during storage. The aim of this study was also to evaluate the quality of the bottled mineral waters and the presence of enterococci and Pseudomonas aeruginosa were verified in six and two bottles, respectively, which is in disagreement with the microbiological quality criteria established in the current legislation. Although no limit is set for HPC in mineral water, this study relies on the limit of 500 colony-forming units per mL of sample (CFU/mL). Seventy-two bottles presented levels above 500 CFU/mL and up to 560,000 CFU/mL. This study showed that the control of HPC (<500 CFU/mL) for non-returnable packaging seems to be adequate to ensure the quality of mineral water during storage. The high values of HPC and its variations detected during storage seem to fully justify the need for a reevaluation of the use of HPC in bottled mineral water quality management. More detailed studies on the potential health risk of HPC and its variations in mineral water are also needed. © 2012 Elsevier Ltd.
Resumo:
A new highly luminescent europium complex with the formula [Eu(TTA) 3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C 4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria. © 2013 American Chemical Society.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB