955 resultados para priming effect of soil organic
Resumo:
There are a large number of agronomic-ecological interactions that occur in a world with increasing levels of CO2, higher temperatures and a more variable climate. Climate change and the associated severe problems will alter soil microbial populations and diversity. Soils supply many atmospheric green house gases by performing as sources or sinks. The most important of these gases include CH4, CO2 and N2O. Most of the green house gases production and consumption processes in soil are probably due to microorganisms. There is strong inquisitiveness to store carbon (C) in soils to balance global climate change. Microorganisms are vital to C sequestration by mediating putrefaction and controlling the paneling of plant residue-C between CO2 respiration losses or storage in semi-permanent soil-C pools. Microbial population groups and utility can be manipulated or distorted in the course of disturbance and C inputs to either support or edge the retention of C. Fungi play a significant role in decomposition and appear to produce organic matter that is more recalcitrant and favor long-term C storage and thus are key functional group to focus on in developing C sequestration systems. Plant residue chemistry can influence microbial communities and C loss or flow into soil C pools. Therefore, as research takings to maximize C sequestration for agricultural and forest ecosystems - moreover plant biomass production, similar studies should be conducted on microbial communities that considers the environmental situations
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable
Resumo:
Researches are always in quest for finding innovative methods for ground improvement using sustainable and environmental friendly solutions. Theproduction of large quantity of biowastes all over the world faces serious problems of handling and disposal. Coir pith is a biowaste from coir industry and sugarcane baggase is another biowaste obtained after extractingjuice from sugar cane. So the present study is an investigation into the effect of coir pith and sugarcane baggase on some geotechnical properties of red earth. The investigation includes study on variation of properties such as O.M.C, maximum dry density, C.B.R. values,unconfined compressive strength and permeability when these materials are included in soil. Several conclusions are arrived at, on the basis of the experiments conducted and it may be helpful for predicting the behavior of such soil matrix
Resumo:
Soft clays known for their high compressibility, low stiffness and low shear strength are always associated with large settlement. In place soil treatment using calcium-based stabilizers like lime and cement is a feasible solution to readdress strength deficiencies and problematic shrink/swell behaviour of unstable subgrade soils. Out of these, lime has been proved unambiguously as the most effective and economical stabilising agent for marine clays. Lime stabilisation creates long-term chemical changes in unstable clay soils to create strong, but flexible, permanent structural layers in foundations and other pavement systems. Even though calcium-based stabilizers can improve engineering properties of soft clays, problems can arise when they are used in soils rich in sulphates. It is possible for marine clays to be enriched with sulphates, either by nature or due to the discharge of nearby industrial wastes containing sulphates. The presence of sulphates is reported to adversely affect the cation exchange and pozzolanic reactions of cement and lime treated soil systems. The anions of sulphates may combine with the available calcium and alumina, and form insoluble ettringite in the soil system. Literature on sulphate attack in lime treated marine clays reports that formation of ettringite in lime-sodium sulphate-clay system is capable of adversely affecting the engineering behavior of marine clays. Only very few studies have been conducted on soft marine clays found along the coastal belt of Kerala and that too, is limited to Cochin marine clays. The studies conducted also have the limitation that the strength behaviour of lime stabilised clay was investigated only for one year. Practically no data pertaining to long term adverse effects likely to be brought about by sulphates on the strength and compressibility characteristics of Cochin marine clays is available. The overriding goal of this investigation was thus to examine the effectiveness of lime stabilisation in Cochin marine clays under varying sulphate contents. The study aims to reveal the changes brought about by varying sulphate contents on both physical and engineering properties of these clays stabilised by lime and the results for various curing periods up to two years is presented in this thesis. Quite often the load causing an unacceptable settlement may be less than the load required to cause shear failure and therefore attempt has been made in this research to highlight sulphate induced changes in both the compressibility and strength characteristics of lime treated Cochin marine clays. The study also aimed at comparing the available IS methods for sulphate quantification and has attempted to determine the threshold level of sulphate likely make these clays vulnerable by lime stabilisation. Clays used in this study were obtained from two different sites in Kochi and contained sulphate in two different concentrations viz., 0.5% and 0.1%. Two different lime percentages were tried out, 3% and 6%. Sulphate content was varied from 1% to 4% by addition of reagent grade sodium sulphate. The long term influence of naturally present sulphate is also investigated. X-ray diffraction studies and SEM studies have been undertaken to understand how the soil-lime reactions are affected in the presence of sodium sulphate. Natural sulphate content of 0.1% did not seem to have influenced normal soil lime reactions but 0.5% sulphate could induce significant changes adversely in both compressibility and strength behaviour of lime treated clays after long duration. Compressibility is seen to increase drastically with increasing sulphate content suggesting formation of ettringite on curing for longer periods. Increase in compression index and decrease in bond strength with curing period underlined the adverse effects induced in lime treated marine clays by the presence of sulphates. Presence of sulphate in concentrations ranging from 0.5 % to 4% is capable of adversely affecting the strength of lime treated marine clays. Considerable decrease is observed with increasing concentrations of sulphate. Ettringite formation due to domination of sodium ions in the system was confirmed in mineralogical studies made. Barium chloride and barium hydroxide is capable of bringing about beneficial changes both in compressibility and strength characteristics of lime treated Cochin marine clays in the presence of varying concentrations of sulphate and is strongly influenced by curing time. Clay containing sodium sulphate has increased strength values when either of barium compounds was used with lime ascompared with specimens treated with lime only. Barium hydroxide is observed to remarkably increase the strength as compared to barium chloride,when used in conjunction with lime to counteract the effect of sulphate.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.
Resumo:
The regional population growth in West Africa, and especially its urban centers, will bring about new and critical challenges for urban development policy, especially in terms of ensuring food security and providing employment for the growing population. (Peri-) urban livestock and vegetable production systems, which can contribute significantly to these endeavours, are limited by various constraints, amongst them limited access to expensive production factors and their (in)efficient use. To achieve sustainable production systems with low consumer health risks, that can meet the urban increased demand, this doctoral thesis determined nutrient use efficiencies in representative (peri-) urban livestock production systems in three West African cities, and investigated potential health risks for consumers ensuing from there. The field study, which was conducted during July 2007 to December 2009, undertook a comparative analysis of (peri-) urban livestock production strategies across 210 livestock keeping households (HH) in the three West African cities of Kano/Nigeria (84 HH), Bobo Dioulasso/Burkina Faso (63 HH) and Sikasso/Mali (63 HH). These livestock enterprises were belonging to the following three farm types: commercial gardening plus field crops and livestock (cGCL; 88 HH), commercial livestock plus subsistence field cropping (cLsC; 109 HH) and commercial gardening plus semi-commercial livestock (cGscL; 13 HH) which had been classified in a preceding study; they represented the diversity of (peri-) urban livestock production systems in West Africa. In the study on the efficiency of ruminant livestock production, lactating cowsand sheep herd units were differentiated based on whether feed supplements were offered to the animals at the homestead (Go: grazing only; Gsf: mainly grazing plus some supplement feeding). Inflows and outflows of nutrients were quantified in these herds during 18 months, and the effects of seasonal variations in nutrient availability on animals’ productivity and reproductive performance was determined in Sikasso. To assess the safety of animal products and vegetables, contamination sources of irrigated lettuce and milk with microbiological contaminants, and of tomato and cabbage with pesticide residues in (peri-) urban agriculture systems of Bobo Dioulasso and Sikasso were characterized at three occasions in 2009. Samples of irrigation water, organic fertilizer and ix lettuce were collected in 6 gardens, and samples of cabbage and tomato in 12 gardens; raw and curdled milk were sampled in 6 dairy herds. Information on health risks for consumers of such foodstuffs was obtained from 11 health centers in Sikasso. In (peri-) urban livestock production systems, sheep and goats dominated (P<0.001) in Kano compared to Bobo Dioulasso and Sikasso, while cattle and poultry were more frequent (P<0.001) in Bobo Dioulasso and Sikasso than in Kano. Across cities, ruminant feeding relied on grazing and homestead supplementation with fresh grasses, crop residues, cereal brans and cotton seed cake; cereal grains and brans were the major ingredients of poultry feeds. There was little association of gardens and livestock; likewise field cropping and livestock were rarely integrated. No relation existed between the education of the HH head and the adoption of improved management practices (P>0.05), but the proportion of HH heads with a long-term experience in (peri-) urban agriculture was higher in Kano and in Bobo Dioulasso than in Sikasso (P<0.001). Cattle and sheep fetched highest market prices in Kano; unit prices for goats and chicken were highest in Sikasso. Animal inflow, outflow and dairy herd growth rates were significantly higher (P<0.05) in the Gsf than in the Go cattle herds. Maize bran and cottonseed expeller were the main feeds offered to Gsf cows as dry-season supplement, while Gsf sheep received maize bran, fresh grasses and cowpea pods. The short periodic transhumance of Go dairy cows help them maintaining their live weight, whereas Gsf cows lost weight during the dry season despite supplement feeding at a rate of 1506 g dry matter per cow and day, resulting in low productivity and reproductive performance. The daily live weight gains of calves and lambs, respectively, were low and not significantly different between the Go and the Gsf system. However, the average live weight gains of lambs were significantly higher in the dry season (P<0.05) than in the rainy season because of the high pressure of gastrointestinal parasites and of Trypanosoma sp. In consequence, 47% of the sheep leaving the Go and Gsf herds died due to diseases during the study period. Thermo-tolerant coliforms and Escherichia coli contamination levels of irrigation water significantly exceeded WHO recommendations for the unrestricted irrigation of vegetables consumed raw. Microbial contamination levels of lettuce at the farm gate and the market place in Bobo Dioulasso and at the farm gate in Sikasso were higher than at the market place in Sikasso (P<0.05). Pesticide residues were detected in only one cabbage and one tomato sample and were below the maximum residue limit for consumption. Counts of thermo-tolerant coliforms and Escherichia coli were higher in curdled than in raw milk (P<0.05). From 2006 to x 2009, cases of diarrhea/vomiting and typhoid fever had increased by 11% and 48%, respectively, in Sikasso. For ensuring economically successful and ecologically viable (peri-) urban livestock husbandry and food safety of (peri-) urban foodstuffs of animal and plant origin, the dissemination and adoption of improved feeding practices, livestock healthcare and dung management are key. In addition, measures fostering the safety of animal products and vegetables including the appropriate use of wastewater in (peri-) urban agriculture, restriction to approve vegetable pesticides and the respect of their latency periods, and passing and enforcement of safety laws is required. Finally, the incorporation of environmentally sound (peri-) urban agriculture in urban planning by policy makers, public and private extension agencies and the urban farmers themselves is of utmost importance. To enable an efficient (peri-) urban livestock production in the future, research should concentrate on cost-effective feeding systems that allow meeting the animals’ requirement for production and reproduction. Thereby focus should be laid on the use of crop-residues and leguminous forages. The improvement of the milk production potential through crossbreeding of local cattle breeds with exotic breeds known for their high milk yield might be an accompanying option, but it needs careful supervision to prevent the loss of the local trypanotolerant purebreds.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.
Resumo:
Inadequate links between researchers and farmers has resulted in low uptake of research advances recommended to improve food security in the central highlands of Kenya. Access to timely and accurate information by extension agents and farmers is paramount in dissemination of soil fertility management practices. Hence, the study sought to investigate the effect of education levels on communication channels used to disseminate soil fertility technologies in the Central highlands of Kenya. Questionnaires were used to elicit information from 105 extension agents and 240 farmers. About 50.5% of the extension officers were certificate holders while 29.5% were diploma holders from agricultural institutes. Majority of the farmers had attained primary education (59.6%) while 25.8% and 9.2% had attained secondary and post secondary education, respectively. Research institutions were the most accessible sources of information on soil fertility management practices by extension agents while internet and scientific conferences were the least scored as accessible sources of soil fertility management information by extension agents. Education levels significantly influenced preference of individual approach methods by farmers. There was a significant positive relationship between education and accessibility of internet as a source of information on green manure. The implication of the study was that education levels influenced the mode of communication used in the transfer of soil fertility research outputs to the end users. Consequently, it is extremely important to consider education levels in selection of dissemination pathways used in agriculture.
Resumo:
The effects of continuous tillage on the distribution of soil organic matter (SOM) and aggregates have been well studied for arable soils. However, less is known about the effects of sporadic tillage on SOM and aggregate dynamics in grassland soils. The objectives of the present thesis were (I) to study the longer-term effects of sporadic tillage of grassland on organic carbon (Corg) stocks and the distribution of aggregates and SOM, (II) to investigate the combined effects of sporadic tillage and fertilization on carbon and nitrogen dynamics in grassland soils, and (III) to study the temporal dynamics of Corg stocks, aggregate distribution and microbial biomass in grassland soils. Soil samples were taken in three soil depths (0 – 10 cm; 10 – 25 cm; 25 – 40 cm) from a field trial with loamy sandy soils (Cambisols, Eutric Luvisols, Stagnosols, Anthrosols) north of Kiel, Germany. For Objective I we have sampled soil two and five years after one or two tillage operation(s). Treatments consisted of (i) permanent grassland, (ii) tillage of grassland followed by a re-establishment of grassland and (iii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The tillage in grassland led to a reduction in Corg stocks, large macroaggregates (>2000 µm) and SOM in the top 10 cm soil depth. These findings were still significant two years after tillage; however, five years after tillage no longer present. Regarding the soil profile (0 – 40 cm) no significant differences in the mentioned parameters between the tilled plots and the permanent grassland existed. A second tillage event and the insertion of one season of winter wheat did not lead to any further effects on Corg stocks as well as aggregate and SOM concentrations in comparison with a single tillage event in these grassland soils. Treatments adapted for Objective II included (i) long-term grassland and (ii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The plots were split and received either 240 kg N ha-1 year-1 in the form of cattle slurry or no cattle slurry application. The application of slurry within a period of four years had no effects on the Corg and total nitrogen stocks or the aggregate distribution, but led to a reduction of free and not physically protected SOM. However, the application of cattle slurry and the grassland renovation seems to change the plant species composition and therefore generalizations on the direct effects are not yet possible. For studying Objective III a further field trial was initiated in September 2010. Soil samples were taken six times within one year (from October 2010 to October 2011) (i) after the conversion from arable land into grassland, (ii) after the tillage of grassland followed by a re-establishment of grassland and (iii) in a permanent grassland. We found an increase in the microbial and fungal biomass after the conversion of arable land into grassland, but no effect on aggregate distribution and Corg stocks. A one-time tillage operation in grassland led to a reduction in large macroaggregates and Corg stocks in the top 10 cm soil depth with no effect on the sampled soil profile. However, we found large variations in the fungal biomass and aggregate distribution within one year in the permanent grassland, presumably caused by environmental factors. Overall, our results suggest that a single tillage operation in grassland soils markedly decreased the concentrations of Corg, larger aggregates and SOM. However, this does not result in long-lasting effects on the above mentioned parameters. The application of slurry cannot compensate the negative effects of a tillage event on aggregate concentrations or Corg stocks. However, while the Corg concentration is not subject to fluctuations within a year, there are large variations of the aggregate distribution even in a permanent grassland soil. Therefore conclusions of results from a single sampling time should be handled with care.
Resumo:
The periodic silane burst technique was employed during metalorganic chemical vapor deposition of epitaxial GaN on AlN buffer layers grown on Si (111). Periodic silicon delta doping during growth of both the AlN and GaN layers led to growth of GaN films with decreased tensile stresses and decreased threading dislocation densities, as well as films with improved quality as indicated by x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The possible mechanism of the reduction of tensile stress and the dislocation density is discussed in the paper.
Resumo:
Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used in agriculture and poses an environmental concern because of its susceptibility to leach from soil to water. We investigated the effect of soil depth on mecoprop-p biodegradation and its relationship with the number and diversity of tfdA related genes, which are the most widely known genes involved in degradation of the phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was approximately 12 days in soil sampled from <30 cm depth, and increased progressively with soil depth, reaching over 84 days at 70–80 cm. In sub-soil there was a lag period of between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in top-soil samples prior to the onset of degradation. The maximum degradation rate was the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were present prior to mecoprop-p degradation, real time PCR revealed that degradation was associated with proliferation of tfdA genes. The number of tfdA genes and the most probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p addition were below the limit of quantification and detection respectively. Melting curves from the real time PCR analysis showed that prior to mecoprop-p degradation both class I and class III tfdA genes were present in top- and sub-soil samples. However at all soil depths only tfdA class III genes proliferated during degradation. Denaturing gradient gel electrophoresis confirmed that class III tfdA genes were associated with mecoprop-p degradation. Degradation was not associated with the induction of novel tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA gene diversity with soil depth prior to or following degradation.
Resumo:
Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris were exposed to 250, 250 and 350 mg kg(-1) Cu respectively in Cu(NO3)(2(aq)) amended soil for 28 d. Earthworms were then depurated for 24 to 72 h, digested and analysed for Cu and Ti or, subsequent to depuration were dissected to remove any remaining soil particles from the alimentary canal and then digested and analysed. This latter treatment proved impossible for E. andrei due to its small size. Regardless of depuration time, soil particles were retained in the alimentary canal of L. rubellus and L. terrestris. Tissue concentration determinations indicate that E. andrei should be depurated for 24 h, L. rubellus for 48 h and L. terrestris should be dissected. Ti was bioaccumulated and therefore could not be used as an inert tracer to determine mass of retained soil. Calculations indicate that after 28 d earthworms were still absorbing Cu from soil. (C) 2006 Elsevier Ltd. All rights reserved.