986 resultados para pressures
Resumo:
The goal of this study was to investigate whether the elastic behavior of conduit arteries of humans or rats is altered as a result of concomitant hypertension. Forearm arterial cross-sectional compliance-pressure curves were determined noninvasively by means of a high precision ultrasonic echo-tracking device coupled to a photoplethysmograph (Finapres system) allowing simultaneous arterial diameter and finger blood pressure monitoring. Seventeen newly diagnosed hypertensive patients with a humeral blood pressure of 163/103 +/- 4.4/2.2 mm Hg (mean +/- SEM) and 17 age- and sex-matched normotensive controls with a humeral blood pressure of 121/77 +/- 3.2/1.9 mm Hg were included in the study. Compliance-pressure curves were also established at the carotid artery of 16-week-old anesthetized spontaneously hypertensive rats (n = 14) as well as Wistar-Kyoto normotensive animals (n = 15) using the same echo-tracking device. In these animals, intra-arterial pressure was monitored in the contralateral carotid artery. Mean blood pressures averaged 197 +/- 4 and 140 +/- 3 mm Hg in the hypertensive and normotensive rats, respectively. Despite the considerable differences in blood pressure, the diameter-pressure and cross-sectional compliance-pressure and distensibility-pressure curves were not different when hypertensive patients or animals were compared with their respective controls. These results suggest that the elastic behavior of a medium size muscular artery (radial) in humans and of an elastic artery (carotid) in rats is not necessarily altered by an increase in blood pressure.
Resumo:
The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt Si∕SiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large
Resumo:
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems
Resumo:
Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system.This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalianphototransduction in order to unravel how the action of natural selection has been distributed throughout thesystem to evolve such traits. We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/Ca2+,K+ ion exchanger (SLC24A1) in rodents. The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.
Resumo:
Atrial septal defect (ASD) typically is asymptomatic in infancy and early childhood and elective defect closure usually is performed at an age between 4 - 6 years. Severe pulmonary hypertension (PHT) complicating an ASD is seen in adulthood and has only occasionally been reported in small children. A retrospective study was undertaken to evaluate the incidence of severe PHT complicating an isolated ASD and requiring early surgical correction in the fi rst year of life. 355 pediatric patients underwent treatment for an isolated ASD either surgically or by catheter intervention during a 10 year period (1996 - 2006) at two tertiary referral centers. 297 patients had secundum ASD and 58 primum ASD with mild to moderate mitral regurgitation. 8 infants were found with isolated ASD (six with secundum and two with primum ASD) associated with signifi cant PHT, accounting for 2.2% of all ASD patients in our centers. These 8 infants had invasively measured pulmonary artery pressures between 50 and 100% of systemic pressure. Median size of the ASD at the time of surgery was 14mm (7 - 20). They were operated in the fi rst year of life and had complicated postoperative courses requiring specifi c treatment for PHT for up to 16 weeks (median 12) postoperatively. Compared to ASD patients without PHT these infants had prolonged postoperative ICU stay of 5 - 9 days (median 8) and prolonged perioperative overall hospital stay of 8 - 32 days (median 15). Ultimate outcome in all 8 infants was good with persistent normalization of pulmonary pressures during mid-term follow-up of between 8 to 60 months (median 28). All other ASD patients had normal pulmonary pressures and mean age at defect closure was higher being 6.2 years for secundum ASD and 3.2 years for primum ASD. In conclusion, ASD is rarely associated with signifi cant PHT in infancy but then requires early surgery to normalize the prognosis of the patients.
Resumo:
1. The formation of groups is a fundamental aspect of social organization, but there are still many questions regarding how social structure emerges from individuals making non-random associations. 2. Although food distribution and individual phenotypic traits are known to separately influence social organization, this is the first study, to our knowledge, experimentally linking them to demonstrate the importance of their interaction in the emergence of social structure. 3. Using an experimental design in which food distribution was either clumped or dispersed, in combination with individuals that varied in exploratory behaviour, our results show that social structure can be induced in the otherwise non-social European shore crab (Carcinus maenas). 4. Regardless of food distribution, individuals with relatively high exploratory behaviour played an important role in connecting otherwise poorly connected individuals. In comparison, low exploratory individuals aggregated into cohesive, stable subgroups (moving together even when not foraging), but only in tanks where resources were clumped. No such non-foraging subgroups formed in environments where food was evenly dispersed. 5. Body size did not accurately explain an individual's role within the network for either type of food distribution. 6. Because of their synchronized movements and potential to gain social information, groups of low exploratory crabs were more effective than singletons at finding food. 7. Because social structure affects selection, and social structure is shown to be sensitive to the interaction between ecological and behavioural differences among individuals, local selective pressures are likely to reflect this interaction.
Resumo:
Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.
Resumo:
The combined effect of pressure and mild temperature treatments on bovine sarcoplasmic proteins and quality parameters was assessed. M. longissimus dorsi samples were pressurised in a range of 200–600 MPa and 10–30 °C. High Pressure Processing (HPP) induced a reduction of protein solubility (p < 0.001) compared to non-treated controls (NT), more pronounced above 200 MPa. HPP at pressures higher than 200 MPa induced a strong modification (p < 0.001) of meat colour and a reduction of water holding capacity (WHC). SDS–PAGE analysis demonstrated that HPP significantly modified the composition of the sarcoplasmic protein fraction. The pressurisation temperature mainly affected protein solubility and colour; a smaller effect was observed on protein profiles. Significant correlations (p < 0.001) between sarcoplasmic protein solubility and both expressible moisture (r = −0.78) and colour parameters (r = −0.81 to −0.91) suggest that pressure induced denaturation of sarcoplasmic proteins could influence to some extent WHC and colour modifications of beef. Changes in protein band intensities were also significantly correlated with protein solubility, meat lightness and expressible moisture. These results describe the changes induced by HPP on sarcoplasmic proteins and confirm a relationship between modification of the sarcoplasmic protein fraction and alteration of meat quality characteristics
Resumo:
Atrial septal defects (ASDs) are typically asymptomatic in infancy and early childhood, and elective defect closure is usually performed at ages of 4 to 6 years. Severe pulmonary hypertension (PH) complicating an ASD is seen in adulthood and has only occasionally been reported in small children. A retrospective study was undertaken to evaluate the incidence of severe PH complicating an isolated ASD and requiring early surgical correction. During a 10-year period (1996 to 2006), 355 pediatric patients underwent treatment for isolated ASDs either surgically or by catheter intervention at 2 tertiary referral centers. Two hundred ninety-seven patients had secundum ASDs, and 58 had primum ASDs with mild to moderate mitral regurgitation. Eight infants were found with isolated ASDs (6 with secundum ASDs and 2 with primum ASDs) associated with significant PH, accounting for 2.2% of all patients with ASDs at the centers. These 8 infants had invasively measured pulmonary artery pressures of 50% to 100% of systemic pressure. They were operated in the first year of life and had complicated postoperative courses requiring specific treatment for PH for up to 16 weeks postoperatively. The ultimate outcomes in all 8 infants were good, with persistent normalization of pulmonary pressures during midterm follow-up of up to 60 months (median 28). All other patients with ASDs had normal pulmonary pressures, and the mean age at defect closure was significantly older, at 6.2 years for secundum ASDs and 3.2 years for primum ASDs. In conclusion, ASDs were rarely associated with significant PH in infancy but then required early surgery and were associated with excellent midterm outcomes in these patients.
Resumo:
In this retrospective analysis, we assessed the usefulness of ambulatory blood pressure monitoring in the evaluation of elderly hypertensive patients. Thirty-eight untreated and 31 treated hypertensives aged 70 years or more had a systolic blood pressure greater than or equal to 160 mmHg and/or a diastolic blood pressure greater than or equal to 95 mmHg in the clinic. All 69 patients underwent blood pressure monitoring during their customary daily activities using a portable semi-automatic blood pressure recorder (Remier M2000). The mean of all blood pressures obtained with this device was taken as the ambulatory recorded blood pressure. Recorded blood pressures were greater than or equal to 160 mmHg systolic and greater than or equal to 90 mmHg diastolic in 17 untreated and 17 treated patients. In these patients, the introduction of antihypertensive therapy, or its modification, markedly reduced blood pressure during a 4-8 month follow-up. A further 21 untreated and 14 treated patients had recorded blood pressures of less than 160/90 mmHg. The treatment status of these patients was left unchanged for 4-8 months of follow-up. Nevertheless, office blood pressure in these groups, with no change in treatment, decreased significantly during the observation period. At the last visit to the outpatient clinic, there was no significant difference in blood pressure between the four subgroups of patients. Thus, ambulatory blood pressure monitoring appears to be useful in the elderly hypertensive patient in detecting those patients whose blood pressure is elevated only in the clinic. Blood pressure profiles obtained outside the clinic may therefore be useful in making therapeutic decisions in the aged hypertensive.
Resumo:
We investigate the selective pressures on a social trait when evolution occurs in a population of constant size. We show that any social trait that is spiteful simultaneously qualifies as altruistic. In other words, any trait that reduces the fitness of less related individuals necessarily increases that of related ones. Our analysis demonstrates that the distinction between "Hamiltonian spite" and "Wilsonian spite" is not justified on the basis of fitness effects. We illustrate this general result with an explicit model for the evolution of a social act that reduces the recipient's survival ("harming trait"). This model shows that the evolution of harming is favoured if local demes are of small size and migration is low (philopatry). Further, deme size and migration rate determine whether harming evolves as a selfish strategy by increasing the fitness of the actor, or as a spiteful/altruistic strategy through its positive effect on the fitness of close kin.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.
Resumo:
An initial feasibility study indicated that the "Purdue Accelerated Polishing Method" gave repeatable results when testing the skid resistance of laboratory specimens. The results also showed a rough correlation with the field performance of the same aggregate sources. The research was then expanded to include all available asphalt aggregates. The results of the expanded study indicated that the method is not presently capable of developing and measuring the full skid potential of the various aggregate sources. Further research in the area of polishing times and/or pressures is needed.